0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

智能视频分析系统 YOLOv8

燧机科技 ? 2024-07-04 20:37 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

伴随着智能视频分析系统的迅速进步和执行,安全性监控的广泛运用激发了智能视频分析系统和分析技术性的逐步推进科学研究。在各方面的真实运用中,将人工智能视频分析关键技术于传统式视频监控行业已变为完成当代技术性综合性视频管理方法的硬性需求。智能视频分析系统是一种涉及到数字图像处理、计算机视觉、人工智能等方面的智能视频分析商品。它可以分析视频地区、物件遗留下或遗失、逆向行驶、群体相对密度出现异常等异常现象,并立即推送警报信息内容。

现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本。

wKgaomaGldqASxtjAAHcWqVqb4M739.png

智能视频分析系统可以识别个人行为分析涉及到多种多样优化算法,包含深度学习算法、视频结构型技术性、图像识别算法、面部较为优化算法、身体鉴别优化算法、画面活体算法、AI3D画面矫正算法、人或物体移动侦测算法、视觉图像比对算法、图片物体前后轨迹算法、人体跟踪算法等。

class Conv(nn.Module): # 标准的卷积 参数(输入通道数, 输出通道数, 卷积核大小, 步长, 填充, 组, 扩张, 激活函数) default_act = nn.SiLU() # 默认的激活函数 def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) # 2维卷积,其中采用了自动填充函数。 self.bn = nn.BatchNorm2d(c2) # 使得每一个batch的特征图均满足均值为0,方差为1的分布规律 # 如果act=True 则采用默认的激活函数SiLU;如果act的类型是nn.Module,则采用传入的act; 否则不采取任何动作 (nn.Identity函数相当于f(x)=x,只用做占位,返回原始的输入)。 self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): # 前向传播 return self.act(self.bn(self.conv(x))) # 采用BatchNorm def forward_fuse(self, x): # 用于Model类的fuse函数融合 Conv + BN 加速推理,一般用于测试/验证阶段 return self.act(self.conv(x)) # 不采用BatchNorm

目前传统式的视频监控大多数起着调查取证的功效,不可以具有防止和预警信息的功效。选用视觉效果人工智能视频个人行为分析技术性,可完成即时分析、实时鉴别和即时预警信息,鉴别视频中必须预警信息的操作和姿态,达到安全性监控情景中不安全行为鉴别的必须。它转变了过去视频处于被动监控的情况,不但仅限于给予视频照片,还积极智能分析、鉴别和区别视频信息内容,可以订制事情种类,一旦出现异常或紧急状况可以立即警报,其在安全领域的运用将必然地有利于摆脱人力资源疲惫的局限,进而更合理地协助安全性工作人员解决紧急状况。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    请问yolov8训练模型如何写双线程?

    用yolo8训练的模型做送药小车,看了yolov8的历程,可以使用,但是不知道输出时具体用的是什么通道?我看API发现,是用get_frame()获取一帧图片给AI程序使用,但是返回值
    发表于 07-30 06:23

    YOLOv8转换到kmodel时出现undefined symbol错误怎么解决?

    使用yolo v8训练视觉检测模型,使用yolov8版本为8.3.159,训练完后在windows使用ultralytics中的函数导出.pt文件为.onnx文件,然后在WSL
    发表于 07-28 06:20

    RK3576 Yolov11训练部署教程

    1.Yolo11简介YOLO11系列是YOLO家族中最先进的(SOTA)、最轻量级、最高效的模型,其表现优于其前辈。它由Ultralytics创建,该组织发布了YOLOv8,这是迄今为止最稳定
    的头像 发表于 07-25 15:22 ?111次阅读
    RK3576 <b class='flag-5'>Yolov</b>11训练部署教程

    yolov8怎么在wsl中搭建呢?

    纯小白,yolov8怎么在wsl中搭建呢?一直报错且无法安装pip包
    发表于 07-11 07:37

    如何提高yolov8模型在k230上运行的帧率?

    libs.YOLO import YOLOv8 import os,sys,gc import ulab.numpy as np import image if name==\"main\"
    发表于 06-20 06:25

    YOLOv8水果检测示例代码换成640输入图像出现目标框绘制错误的原因 ?

    官网中的YOLOv8 水果检测关于图片推理的示例源代码: from libs.YOLO import YOLOv8 import os,sys,gc import ulab.numpy as np
    发表于 06-18 06:37

    OpenVINO C#如何运行YOLO11实例分割模型

    代码是我在OpenVINO-CSharp-API作者开源的YOLOv8对象检测的代码基础上修改而成。
    的头像 发表于 04-29 09:30 ?1129次阅读
    OpenVINO C#如何运行YOLO11实例分割模型

    如何修改yolov8分割程序中的kmodel?

    自定义YOLOv8分割类class SegmentationApp(AIBase): def __init__(self,kmodel_path,labels,model_input_size
    发表于 04-25 08:22

    labview调用yolov8/11目标检测、分割、分类

    labview使用2020版本64位编辑,调用yolov8/11的onnx模型案例。 源码: 通过网盘分享的文件:Labview_cls.zip等4个文件 链接: https
    发表于 04-21 19:37

    RV1126 yolov8训练部署教程

    本教程针对目标检测算法yolov8的训练和部署到EASY-EAI-Nano(RV1126)进行说明,而数据标注方法可以参考我们往期的文章。
    的头像 发表于 04-18 15:18 ?769次阅读
    RV1126 <b class='flag-5'>yolov8</b>训练部署教程

    RV1126 yolov8训练部署教程

    YOLOv8 是 ultralytics 公司在 2023 年 1月 10 号开源的基于YOLOV5进行更新的 下一个重大更新版本,目前支持图像分类、物体检测和实例分割任务,鉴于Yolov5的良好表现,
    的头像 发表于 04-16 14:53 ?556次阅读
    RV1126 <b class='flag-5'>yolov8</b>训练部署教程

    RK3576 Yolov11训练部署教程

    YOLO11 系列是 YOLO 家族中最先进的 (SOTA)、最轻量级、最高效的模型,其表现优于其前辈。它由 Ultralytics 创建,该组织发布了 YOLOv8,这是迄今为止最稳定、使用最广泛的 YOLO 变体。YOLO11 将延续 YOLO 系列的传奇。
    的头像 发表于 04-03 09:35 ?1001次阅读
    RK3576 <b class='flag-5'>Yolov</b>11训练部署教程

    RK3576 yolov8训练部署教程

    本章展示yolov8模型的在EASY EAI Orin nano的部署过程。
    的头像 发表于 04-02 16:04 ?547次阅读
    RK3576 <b class='flag-5'>yolov8</b>训练部署教程

    YOLOv8中的损失函数解析

    YOLO长期以来一直是目标检测任务的首选模型之一。它既快速又准确。此外,其API简洁易用。运行训练或推断作业所需的代码行数有限。在2023年下半年,YOLOv8在框架中引入了姿态估计后,该框架现在支持最多四个任务,包括分类、目标检测、实例分割和姿态估计。
    的头像 发表于 11-05 17:15 ?4036次阅读
    <b class='flag-5'>YOLOv8</b>中的损失函数解析

    使用NVIDIA JetPack 6.0和YOLOv8构建智能交通应用

    进行视频数据的接收与存储;借助 YOLOv8 和 DeepStream AI 感知服务实现实时目标检测和车辆追踪;车辆移动的时空分析。在构建好这一流程后,将利用 API 生成分析报告。
    的头像 发表于 08-23 16:49 ?1079次阅读
    使用NVIDIA JetPack 6.0和<b class='flag-5'>YOLOv8</b>构建<b class='flag-5'>智能</b>交通应用