0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅谈超分辨光学成像

jf_64961214 ? 来源:jf_64961214 ? 作者:jf_64961214 ? 2024-03-15 06:35 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

wKgaomXze7uAa9jAAABIyg0MW68449.png

分辨光学定义及应用

分辨光学成像特指分辨率打破了光学显微镜分辨率极限(200nm)的显微镜,技术原理主要有受激发射损耗显微镜技术和光激活定位显微镜技术。

管中亦可窥豹——受激发射损耗显微镜

传统光学显微镜采用宽场成像的方式,照明光一次照亮整个成像范围,然后用相机对整个成像范围进行曝光成像,一次获得整幅图像。“管中窥豹”型的扫描成像则有所不同,照明光聚焦在样品上,形成一个极小的光点——也就是所谓的“管”,每次只对光点对应的区域进行成像;当我们改变光点的位置,使它依次扫遍整个样品,也就获得了一幅完整的图像。有人要问了,即使采用“管中窥豹”的方式,每次聚焦的光点依然受到衍射极限限制,系统分辨能力比起所谓的宽场成像没有提高,扫描过程又增加了系统的复杂度,不是自找麻烦吗?Stefan W. Hell的回答很简单:只要设法缩小“管中窥豹”的“管”,就能提高系统的分辨能力,实现超分辨。

通常的荧光成像是这样的:荧光分子在吸收了照明光(或者叫激发光)A之后,会在很短的时间持续发出荧光B。扫描成像系统的分辨能力取决于A在样品处的聚焦光点大小。Hell找到了荧光的开关——第三种光C,在C的照射下,荧光分子即使吸收了激发光A,也没法再发出荧光B。Hell让开关C同样打在样品上,形成一个四周亮、中心暗的“面包圈”,“面包圈”中心的暗区域比艾里斑还要小;然后把面包圈套在艾里斑上,就像在“管”的出口又加了一个小孔,使“管”的直径大大减少,也就提高了整台显微镜的分辨能力。

wKgZomXze7yAF5R4AAClgWb0eRU021.png

“面包圈”限制了激发光A的有效范围

“我只看到星星”“我看到了银河”——光激活定位显微

荧光分子是荧光样品的最小发光单元,由于衍射极限的限制,在相邻的两个荧光分子同时点亮时,我们只能看到一个光斑,但如果每次只点亮一个分子,就可以通过光斑,计算得到荧光分子的准确位置。

Eric Betzig和William E. Moerner采用的就是这样一种方法,如果说STED技术核心是“擦除”,那么PALM技术的核心就是“定位”:Moerner发现存在光D可以“打开”荧光。通过控制D的照射剂量,保证每次只有少量荧光分子处在打开状态;当荧光分子在开与关之间切换时,整幅图像中的荧光信号就会像银河中的星星一样亮暗闪烁,只要进行足够多次的开关和成像,就可以组合出整个样品的图像。

wKgaomXze7yAVfaNAABI7n9ficQ029.jpg

溶酶体膜在不同显微镜下的成像结果。(左)传统光学显微镜成像;(中)光激活定位显微镜成像;(右)放大的光激活定位显微镜成像。

参考使用产品

美国普林斯顿公司-FERGIE

wKgZomXze7yAJEHwAAJ65KgPpAU213.png

特点:

· 无像差光学设计,完全没有彗形相差;

· FERGIE特有的光学设计可产生衍射极限图像,适用于从紫外到近红外波长的微光光谱应用;

· 集成TE冷却背照式CCD,制冷低至-55°C,允许长的积分时间来检测微弱的信号;

· 帧转移CCD架构,1kHz的频率捕获光谱速率(合并10行);

· 基于FPGA的内部定时发生器;

· 动力学光谱模式,拥有微秒时间分辨率。

美国普林斯顿公司-IsoPlance

wKgaomXze72AA_oFAADAnr-Flo0163.jpg

特点:

· 无杂散光设计;

· 出色的成像性能;

· 高光通量;

· 动力学塔轮,支持三个光栅,软件控制自动旋转;

· 高效率光学镀膜,可选的银,金或介电涂层的反射率为98%。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光谱
    +关注

    关注

    4

    文章

    936

    浏览量

    36135
  • 成像系统
    +关注

    关注

    2

    文章

    205

    浏览量

    14288
  • 光学成像
    +关注

    关注

    0

    文章

    88

    浏览量

    10443
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    FLIR声学成像仪在工业维护与故障诊断领域的应用

    在工业维护与故障诊断领域,声学成像技术正掀起检测手段的新变革。FLIR声学成像仪作为行业标杆,凭借出色性能与智能功能,为工程师带来全新检测体验。下面小菲就讲讲,拿到全新FLIR声学成像仪后,如何从开箱到精准检测,快速定位并解决故
    的头像 发表于 06-30 11:32 ?410次阅读
    FLIR声<b class='flag-5'>学成像</b>仪在工业维护与故障诊断领域的应用

    智能光学计算成像技术与应用

    智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、表面
    的头像 发表于 03-07 17:18 ?616次阅读
    智能<b class='flag-5'>光学</b>计算<b class='flag-5'>成像</b>技术与应用

    高像素分辨率2K(2048*2048)微型显示器--纯振幅液晶型空间光调制器FLCOS

    高像素分辨率2K(2048*2048)微型显示器,具备高分辨率(2048x2048),高填充率(>94%),高响应速度(3.6KHz)的特点,适用于半导体外观检测、医学成像、3D光学
    的头像 发表于 01-23 14:22 ?711次阅读
    高像素<b class='flag-5'>分辨</b>率2K(2048*2048)微型显示器--纯振幅液晶型空间光调制器FLCOS

    微型晶体管高分辨率X射线成像

    的前提下展现微小晶体管的特征。 研究人员使用混合光学成像技术和其他方法来缩小潜在的问题区域;然后, 研究人员用扫描电子显微镜对芯片的部分表面进行成像;最后对芯片切片,用透射电子显微镜(TEM)进一步成像。发现缺陷后,回头来修改其
    的头像 发表于 01-16 11:10 ?481次阅读
    微型晶体管高<b class='flag-5'>分辨</b>率X射线<b class='flag-5'>成像</b>

    如何提高透镜成像分辨

    透镜成像分辨率是指透镜系统能够分辨的最小细节的能力。提高透镜成像分辨率对于许多应用领域,如显微镜、望远镜、相机等,都是至关重要的。以下是一些
    的头像 发表于 12-25 16:54 ?1164次阅读

    新型分辨显微成像技术:突破光学衍射极限

    和运动伪影两大技术难题,可在清醒动物脑中对神经元的快速动态进行分辨光学成像和解析,为探讨动物学习过程中的神经元突触可塑性基础提供了新工具。近年来,新发展
    的头像 发表于 12-19 06:21 ?570次阅读
    新型<b class='flag-5'>超</b><b class='flag-5'>分辨</b>显微<b class='flag-5'>成像</b>技术:突破<b class='flag-5'>光学</b>衍射极限

    次声波在声学成像中的应用

    学成像是一种利用声波进行物体成像的技术,它在医学、工业检测、环境监测等领域有着广泛的应用。传统的声学成像技术主要依赖于人耳可听范围的声波(20Hz至20kHz),但随着科技的发展,次声波(频率低于
    的头像 发表于 12-11 15:36 ?2111次阅读

    光学成像新进展:使用部分相干光进行单向成像

    具有部分相干照明的单向衍射成像仪概念图 来自加州大学洛杉矶分校(UCLA)的一个研究小组公布了光学成像技术的一项新进展,该技术可显著增强视觉信息处理和通信系统。这项研究成果发表在《先进光子学
    的头像 发表于 11-26 06:20 ?481次阅读
    <b class='flag-5'>光学成像</b>新进展:使用部分相干光进行单向<b class='flag-5'>成像</b>

    光学成像的关键技术和工艺

    实现。 光谱成像 光谱成像技术可捕捉材料的光谱信息进行化学分析。 例如,拉曼光谱利用激光与分子振动的相互作用来揭示化学特性。它对于识别化合物和分析材料,包括监测手术环境中的麻醉气体混合物至关重要。 医学成像技术
    的头像 发表于 11-01 06:25 ?614次阅读
    <b class='flag-5'>光学成像</b>的关键技术和工艺

    成像距离和焦距关系是什么

    成像距离和焦距是光学成像系统中两个非常重要的概念,它们之间存在着密切的关系。 1. 焦距的定义 焦距(Focal Length)是指从透镜的光学中心到成像平面上
    的头像 发表于 10-14 09:45 ?3565次阅读

    南昌大学在声学分辨率光声显微成像增强方面研究获得进展

    图1.基于均值回归扩散模型的AR-PAM增强算法流程图 光声显微成像(PAM)作为一种前景广阔的成像模式,结合了光学成像的高空间分辨率和超声成像
    的头像 发表于 10-08 06:19 ?578次阅读
    南昌大学在声学<b class='flag-5'>分辨</b>率光声显微<b class='flag-5'>成像</b>增强方面研究获得进展

    如何使用精密放大器改善医学成像

    电子发烧友网站提供《如何使用精密放大器改善医学成像.pdf》资料免费下载
    发表于 09-27 11:27 ?0次下载
    如何使用精密放大器改善医<b class='flag-5'>学成像</b>

    哈尔滨工业大学在分辨显微成像技术领域取得突破性进展

    近日,哈尔滨工业大学仪器学院先进光电成像技术研究室(IPIC)李浩宇教授团队在生物医学分辨显微成像技术领域取得突破性进展。针对目前活体细胞
    的头像 发表于 09-27 06:33 ?635次阅读
    哈尔滨工业大学在<b class='flag-5'>超</b><b class='flag-5'>分辨</b>显微<b class='flag-5'>成像</b>技术领域取得突破性进展

    什么是散射成像技术?

    近年来,计算机技术的飞速发展、介观物理研究的深入、计算成像思想的完善和图像处理技术的发展,促进了以物理机制为基础的计算光学成像技术的发展。计算光学成像技术作为新型的成像手段,不仅推动了
    的头像 发表于 08-23 06:25 ?616次阅读
    什么是散射<b class='flag-5'>成像</b>技术?

    一种新型全光学复合场成像

    加州大学洛杉矶分校(UCLA)的研究人员在光学成像技术领域取得了一个重要的里程碑。他们开发出了一种新型全光学复合场成像仪,无需数字处理就能捕捉光场的振幅和相位信息。 这项创新有望给生物医学成像
    的头像 发表于 08-06 06:24 ?511次阅读
    一种新型全<b class='flag-5'>光学</b>复合场<b class='flag-5'>成像</b>仪