0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多层石墨烯中的分数量子霍尔效应解析

中科院半导体所 ? 来源:万象经验 ? 2024-02-26 09:54 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

原文作者:Eugene Wang

本文简单介绍了霍尔效应与反常霍尔效应的概念,引申出一种有趣的物理现象:多层石墨烯中的分数反常量子霍尔效应。

我们都知道,当一个电流通过一个导体时,如果有一个垂直于电流方向的磁场,那么导体的两侧会产生一个电压差,这就是霍尔效应。霍尔效应的原理是,磁场会对运动的电子施加一个洛伦兹力,使电子偏离原来的轨道,从而在导体的两侧形成一个电势差。霍尔效应的大小可以用霍尔电阻来衡量,它等于电势差除以电流强度。

霍尔效应在普通的导体中是线性的,即霍尔电阻和磁场强度成正比。但是,在一些特殊的材料中,当磁场很强时,霍尔效应会出现非线性的行为,霍尔电阻不再随着磁场的增加而连续变化,而是跳跃到一些固定的值,这就是量子霍尔效应。

量子霍尔效应的原理是,强磁场会使电子的能级分裂为一系列的分立的能级,称为朗道能级。当电子填充朗道能级时,如果恰好填满了整数个能级,那么霍尔电阻就会出现一个平台,其值等于普朗克常数除以电子电荷的平方的整数倍,这就是整数量子霍尔效应。

如果没有填满整数个能级,那么霍尔电阻就会随着磁场的变化而变化,直到遇到下一个平台,这就是分数量子霍尔效应。这个效应是在1980年代由Tsui,Stormer和Gossard在半导体异质结中发现的,他们因此获得了1998年的诺贝尔物理学奖。他们观察到,在极低的温度和极强的磁场下,霍尔电阻不仅在整数倍的位置出现了平台,还在分数倍的位置出现了平台。

这个现象是非常令人惊讶的,因为它意味着电子之间的相互作用在这里起了决定性的作用。根据Laughlin的理论,分数量子霍尔效应可以被理解为一种新的量子液体的形成,这种量子液体由复合费米子组成,复合费米子是由一个电子和它周围的磁通量捆绑而成的。这些复合费米子可以形成分数统计的准粒子,也就是任意子,它们的电荷是e的分数倍,例如e/3,e/5,e/7等。这些任意子在朗道能级上形成了一个有效的整数量子霍尔效应,从而导致了分数量子霍尔效应。

分数量子霍尔效应是一个非常深刻和美丽的物理现象,它展示了量子力学和统计力学的奇妙结合,以及物质的多样性和丰富性。然而,它的实验观察是非常困难的,因为它需要非常低的温度和非常强的磁场,以及非常纯净和高质量的材料。这就限制了它的研究和应用的范围。那么,有没有可能在零磁场下观察到分数量子霍尔效应呢?

这就引出了另一个概念,叫做反常霍尔效应。反常霍尔效应是指在零磁场下,某些材料也会表现出量子化的霍尔电阻,这是由于它们的拓扑性质,也就是它们的能带结构中存在着非零的陈数。陈数是一个拓扑不变量,它描述了能带中的波函数的相位变化,它和磁场中的磁通量有类似的作用。当一个材料具有非零的陈数时,它就会产生一个有效的磁场,从而导致了反常霍尔效应。

反常霍尔效应的一个典型的例子是石墨烯,它是一种由单层碳原子构成的二维材料,它的能带在两个狄拉克点处是线性的,这使得它具有非零的陈数,从而在零磁场下表现出反常霍尔效应。那么,在反常霍尔效应的基础上,有没有可能出现分数量子反常霍尔效应呢?这是一个长期以来的理论预言,但是一直没有实验的证实。直到最近,一些科学家在多层石墨烯中观察到了这个效应。

多层石墨烯具有许多独特的物理性质,比如高的电子迁移率,强的机械强度,和可调的能带结构。多层石墨烯的能带结构可以通过改变层数,堆叠方式,扭转角度,和外加电场来调节,从而实现不同的电子态,比如金属态,半导体态,拓扑绝缘体态,和超导态。

多层石墨烯的拓扑绝缘体态是一种具有非零陈数的能带结构,它可以在没有外加磁场的情况下产生反常量子霍尔效应。多层石墨烯的拓扑绝缘体态的来源是层间的自旋轨道耦合,它可以使不同层的电子的自旋和轨道相互作用,从而产生一个有效的磁场。多层石墨烯的层间自旋轨道耦合的强度可以通过改变层数和扭转角度来调节,从而实现不同的陈数和反常量子霍尔效应平台。

多层石墨烯中的分数反常量子霍尔效应是一种更加复杂和有趣的现象,它可以在零磁场下产生分数化的霍尔电阻和分数化的电荷激发。多层石墨烯中的分数反常量子霍尔效应的来源是层间的电子相互作用,它可以使拓扑绝缘体态的能带进一步分裂为一些分数占据的能级,称为分数拓扑能级。

多层石墨烯中的分数拓扑能级的存在可以通过一种称为拓扑平带模型的理论来解释,它可以把多层石墨烯的能带结构简化为一些具有非零陈数的平坦能带,这些平坦能带可以容纳分数朗道能级和分数化的电子相互作用,从而导致分数反常量子霍尔效应。多层石墨烯中的分数拓扑能级的存在可以通过一种称为拓扑谱函数的实验手段来观测,它可以测量多层石墨烯的能带结构和陈数的变化,从而证实分数反常量子霍尔效应的出现。

审核编辑:黄飞

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 石墨烯
    +关注

    关注

    54

    文章

    1597

    浏览量

    81828
  • 霍尔效应
    +关注

    关注

    5

    文章

    491

    浏览量

    44063
  • 强磁场
    +关注

    关注

    0

    文章

    5

    浏览量

    5692

原文标题:多层石墨烯中的分数量子反常霍尔效应

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    人工合成石墨片与天然石墨片的差别

    ,相比金属散热片减重80%;2. 航空航天:卫星T/R组件采用定制化人工石墨铜箔复合结构,导热效率提升3倍,重量降低75%;3. 5G通信:傲琪开发的多层石墨人工
    发表于 05-23 11:22

    EastWave应用:光场与石墨和特异介质相互作用的研究

    图 1-1模型示意图 本案例使用“自动计算透反率模式”研究石墨和特异介质的相互作用,分析透反率在有无石墨存在情况下的变化。光源处于近红外波段。 模型为周期结构,图中只显示了该结构
    发表于 02-21 08:42

    一文速览石墨的奥秘

    体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应
    的头像 发表于 02-18 14:11 ?804次阅读
    一文速览<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>的奥秘

    中国科大石墨量子点器件研究取得新突破

    中国科大郭光灿院士团队郭国平、宋骧骧等与本源量子计算有限公司合作,利用双层石墨迷你能谷(minivalley)自由度与自旋自由度之间的相互作用,实现了对
    的头像 发表于 02-11 10:27 ?445次阅读

    一文解析中国石墨的现状及未来

    中国石墨现状 产业规模持续增长:中国石墨市场规模增长迅猛,2017年为70亿元,2022年达335亿元,同比增长26.42%,2023年约为386亿元。 企业发展态势良好:截至20
    的头像 发表于 01-28 15:20 ?1105次阅读

    石墨发现到鸟粪掺杂石墨,未来将会如何?

    of Graphene》的观点论文。这篇文章回顾了石墨发现的二十年历程,强调了这一材料在基础科学和应用技术领域的广泛影响。文中提到,石墨的独特性质,如超强的导电性和力学强度,使其
    的头像 发表于 01-16 14:11 ?671次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>发现到鸟粪掺杂<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>,未来将会如何?

    石墨的分类

    堆积构成,厚度为一个原子层。 双层石墨:由两层碳原子以不同堆垛方式(如AB堆垛、AA堆垛)构成。 少层石墨:由3到10层碳原子构成,通常采用不同的堆垛方式。
    的头像 发表于 01-14 14:37 ?1946次阅读

    ?石墨的基本特性?,制备方法?和应用领域

    ?石墨技术是一种基于石墨这种新型材料的技术,石墨由碳原子以sp?杂化键合形成单层六边形蜂窝
    的头像 发表于 01-14 11:02 ?932次阅读

    霍尔效应量子霍尔效应的原理与机制

    ? 本文介绍了霍尔效应量子霍尔效应的原理与机制。 量子霍尔
    的头像 发表于 01-07 10:20 ?1427次阅读

    菱形石墨结构及其中的量子反常霍尔效应

    本文简单介绍了菱形石墨莫尔结构以及该材料中的量子反常霍尔效应以及未来的应用方向。 莫尔材料的出现开启了凝聚态物理的新篇章,其中几何、电子结
    的头像 发表于 12-06 09:52 ?663次阅读

    石墨发热油墨为汽车后视镜带来智能电加热保护

    Haydale石墨发热油墨采用了先进的石墨纳米材料,这是一种极为强大的导电材料。通过将石墨
    发表于 11-15 15:55

    霍尔效应磁场怎么产生的

    霍尔效应,磁场的产生是外部提供的,而不是由霍尔效应本身产生的。具体来说,磁场通常由外部电源提供的励磁电流产生。 磁场产生的方式 在
    的头像 发表于 10-15 09:46 ?1578次阅读

    石墨和白石墨(氮化硼)的作用区别

    石墨石墨是一种由碳原子以sp?杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。这种独特的结构赋予了石墨
    的头像 发表于 10-06 08:01 ?1173次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>和白<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>(氮化硼)的作用区别

    什么是石墨和白石墨

    石墨石墨是一种由碳原子以sp?杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。这种独特的结构赋予了石墨
    的头像 发表于 09-30 08:02 ?1068次阅读
    什么是<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>和白<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>?

    石墨在激光器的应用

    石墨在激光器的应用是一个广泛而深入的研究领域,其独特的电学、热学和光学性质为激光器的性能提升和应用拓展提供了新的可能性。以下将详细探讨石墨
    的头像 发表于 08-09 10:47 ?1205次阅读