0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

近红外宽带响应光电探测器性能显著提升助力健康监测

MEMS ? 来源:MEMS ? 2024-01-13 09:28 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

红外光探测能力强的光电探测器更有利于检测人体心率,而且探测范围覆盖红光与近红外光的宽带响应光电探测器能用于检测血氧饱和度,因此提升宽带响应光电探测器的红光与近红外光探测能力具有重要意义。然而,经典的二元体异质结宽带响应倍增型有机光电探测器通常由于活性层中给体/受体比例差异较大,导致器件对红光与近红外光的响应能力较弱甚至没有响应。

据麦姆斯咨询报道,近期,闽江学院和重庆邮电大学组成的科研团队在《发光学报》期刊上发表了以“PCE10显著提升三元倍增型有机光电探测器红光与近红外光探测能力”为主题的文章。该文章第一作者和通讯作者为王建彬,主要从事有机光电材料与器件的研究。

本文通过用少量给体材料PCE10替代活性层P3HT∶IEICO‐4F(100∶1)中部分P3HT的方法,制备了结构为ITO/PEDOT∶PSS/P3HT∶PCE10∶IEICO‐4F(90∶10∶1)/Al的体异质结三元倍增型有机光电探测器。三元器件的红光和近红外光探测能力得到显著提升,为制备用于人体心率与血氧饱和度检测的高性能光电探测器提供了策略。

器件制备与表征

器件制备

ITO电极玻璃分别用加洗涤剂的去离子水、丙酮以及异丙醇各经超声波30 min清洗后,放入烘箱70 ℃恒温过夜烘干。接着,将PEDOT∶PSS以5 000 r·min??(40 s)旋涂到预先经紫外臭氧处理15 min的ITO电极玻璃上作为界面层,并在空气环境中经110 ℃退火10 min后转移到充满氮气的手套箱中。

然后,将溶解于1,2-二氯苯溶剂、浓度为40 mg/mL的P3HT∶PCE10∶IEICO-4F(90∶10∶1)和P3HT∶IEICO-4F(100∶1)溶液经充分搅拌后以600 r·min??(25 s)分别旋涂在PEDOT∶PSS界面层上,在手套箱中经80 ℃退火20 s后形成厚度约为250 nm的活性层。紧接着,在真空度为1×10?? Pa的腔体中将厚度约80 nm的Al电金属电极蒸镀到活性层上。最后,在手套箱中用封装玻璃对器件进行封装。材料分子结构和器件结构示意图如图1所示。

f38f3716-b165-11ee-8b88-92fbcf53809c.jpg

图1 材料分子结构和器件结构示意图

器件表征

器件电流密度- 电压特性(J-V)曲线通过Keithley 2636B光电数据采集系统测量得到,入射光由太阳光模拟器提供并采用中性衰减片调节光强,光强由标准太阳能电池进行标定。器件在不同偏压下的EQE响应光谱由Zolix光电探测器测试系统与Keithley 2636B光电数据采集系统组合测量获得。材料在室温下的吸收光谱通过Lambda365紫外-可见分光光度计测量。经加热处理后的器件活性层厚度由Bruker Dektak XT台阶仪测量得到。

结果与讨论

材料能级和吸收光谱

器件中的材料能级如图2(a)所示。活性层中,由于电子给体P3HT和PCE10的最低未占据分子轨道(LUMO)能级与电子受体IEICO-4F的LUMO能级间的差异分别约为1.29 eV和0.55 eV,可将被大量P3HT或PCE10分子所包围的少量IEICO-4F分子看作电子陷阱,电子传输通道不连续。其中,P3HT分子包围IEICO-4F分子构成的电子陷阱比PCE10分子包围IEICO-4F分子构成的电子陷阱深,对电子的束缚能力相对较强。以1,2-二氯苯为溶剂制备的P3HT、PCE10和IEICO-4F薄膜的归一化吸收光谱如图2(b)所示,三种材料的薄膜吸收光谱能够较好地互补。

f3d6a510-b165-11ee-8b88-92fbcf53809c.jpg

图2 (a)器件中的材料能级;(b)P3HT、PCE10和IEICO-4F薄膜的归一化吸收光谱

器件J?V曲线

图3(a)、(b)分别为二元和三元器件的J?V曲线。由于PEDOT∶PSS是空穴传输界面层,有利于空穴传输,并且ITO电极功函数与P3HT或PCE10的最高占据分子轨道(HOMO)能级间的差异相对较小(0.4 eV或0.52 eV),偏压下无光照时无法有效阻挡外电路空穴隧穿注入。

f407b7ae-b165-11ee-8b88-92fbcf53809c.jpg

图3 器件电流密度-电压特性曲线

器件光谱响应特性

图4(a)、(b)分别为二元和三元器件在不同偏压下的EQE响应光谱。二元和三元器件都呈现300 nm ~ 900 nm范围内的宽光谱响应。二元和三元器件的EQE都随偏压增加而显著提升(?100%),可归因于电场E的增强带来的效应。

f439433c-b165-11ee-8b88-92fbcf53809c.jpg

图4 不同偏压下的器件EQE响应光谱

二元和三元器件的响应度和探测灵敏度光谱分别如图5(a)、(b)所示,都与器件EQE相关,形状和EQE光谱相似。与二元器件相比,三元器件在300 nm ~ 900 nm光谱响应范围内的响应度平均值(698.2 A·W??)和探测灵敏度平均值(5. 29×10?? Jones)分别提升了49倍和16倍。特别是,三元器件在长波长范围内的响应度和探测灵敏度提升更显著。活性层中掺入PCE10能够显著提升三元器件在响应范围内的整体光探测能力,特别是对器件红光和近红外光探测能力的提升,具有重要意义。

f4618b44-b165-11ee-8b88-92fbcf53809c.jpg

图5 二元与三元器件的响应度光谱(a)和探测灵敏度光谱(b)

器件工作机理

图6为反向偏压和光照下的三元体异质结倍增型有机光电探测器中的载流子传输示意图。反向偏压下,被电子陷阱捕获在Al电极附近的光生电子数决定了外电路空穴隧穿注入活性层的数量。入射光透过ITO电极先被附近的材料吸收产生大量光生电子分布在ITO电极附近,少量入射光会穿过活性层到达Al电极附近被吸收产生少量光生电子。

f48ddeba-b165-11ee-8b88-92fbcf53809c.jpg

图6 反向偏压下,三元器件中的载流子传输示意图

结论

本文通过溶液法制备了结构分别为ITO/PEDOT∶PSS/P3HT∶IEICO-4F(100∶1)/Al和ITO/PEDOT∶PSS/P3HT∶PCE10∶EICO-4F(90∶10∶1)/Al的二元和三元体异质结倍增型有机光电探测器。与二元器件相比,三元器件在810 nm处的EQE(147000%)、R(960.2 A·W??)和D*(7.27 × 10?? Jones)分别提升了105、105、36倍,同时三元器件在660 nm处的EQE(134000%)、R(713.2 A·W??)和D*(5.4 × 10?? Jones)分别提升了77、77、26倍。提升倍增型有机光电探测器的红光与近红外光探测能力,有利于采用指端透射法在检测人体HR和SpO?过程中实现微弱信号检测以及精准测量。因此,采用双电子给体的策略来提升倍增型有机光电探测器红光与近红外光的探测能力,有利于拓宽倍增型有机光电探测器的应用范围。

论文链接:

DOI: 10. 37188/CJL. 20230257







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 太阳能电池
    +关注

    关注

    22

    文章

    1238

    浏览量

    72057
  • 模拟器
    +关注

    关注

    2

    文章

    938

    浏览量

    44604
  • PSS
    PSS
    +关注

    关注

    0

    文章

    21

    浏览量

    12084
  • 光电探测器
    +关注

    关注

    4

    文章

    273

    浏览量

    21040

原文标题:近红外宽带响应光电探测器性能显著提升,助力健康监测

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    超表面技术:光电探测器性能提升的新引擎

    在纳米科技飞速发展的当下,超表面作为一种新型人工材料,正逐渐走进大众视野,成为科研领域的热门话题。在光探测领域,它能大幅提升光吸收效率和光谱选择性,助力制造出更灵敏、更小巧的探测器,广
    的头像 发表于 07-24 11:32 ?34次阅读
    超表面技术:<b class='flag-5'>光电</b><b class='flag-5'>探测器</b><b class='flag-5'>性能</b><b class='flag-5'>提升</b>的新引擎

    红外探测器像元尺寸怎么选

    性能,因此是红外探测器最重要的指标之一。 上一期我们讲到像元尺寸的发展趋势是越来越小,这一趋势不仅提高了探测器的分辨率和清晰度,还促进了红外
    的头像 发表于 04-01 16:43 ?646次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸怎么选

    红外探测器像元尺寸详解

    红外探测器像元尺寸是红外热成像领域中的一个关键参数,它指的是在红外探测器芯片焦平面阵列上,每个像元的实际物理尺寸,通常以微米(μm)为单位来
    的头像 发表于 03-31 16:33 ?794次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸详解

    红外探测器的分类介绍

    和量化这种辐射,红外探测器利用了多种物理效应,其中最为关键的是红外热效应和光电效应。这些效应的输出大多为电量形式,或者可以方便地转换为电量,从而实现了对
    的头像 发表于 03-27 15:33 ?848次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>的分类介绍

    华南理工最新AM:光电倍增驱动的双模式有机光探测器,偏压切换下的性能飞跃与应用拓展

    光电倍增型有机光电探测器(PM-OPDs)具有信号放大功能,适用于微弱光检测,但响应速度慢、暗电流高。光伏型有机光电
    的头像 发表于 03-19 09:04 ?684次阅读
    华南理工最新AM:<b class='flag-5'>光电</b>倍增驱动的双模式有机光<b class='flag-5'>探测器</b>,偏压切换下的<b class='flag-5'>性能</b>飞跃与应用拓展

    新型范德华异质结探测器实现宽带偏振探测

    ?两种二维材料的优异特性,形成了低暗电流、高性能的范德华异质结器件。该器件不仅具有宽带探测能力,覆盖可见光到红外光谱范围,还展现出了
    的头像 发表于 02-12 10:10 ?506次阅读

    Bias-Tee供电与宽带有源器件 (放大器、光电探测器、调制、直调激光

    。 Bias Tee驱动宽带放大器、探测器而且在其后端,也可配置一Bias-tee电路,作为宽带放大器或者光电探测器的暗电流的引出,降低噪声
    发表于 01-20 15:24

    线型光束感烟火灾探测器分为几种

    光束具有方向性好、亮度高等特点,使得探测器能够远距离、高精度地监测烟雾。 红外光束线型感烟火灾探测器 : 这类探测器则采用
    的头像 发表于 09-25 15:25 ?5408次阅读

    被动红外探测器的特点和安装使用要求

    被动红外探测器是一种采用被动红外方式,以达到安保报警功能的探测器。其特点和安装使用要求如下: 特点 被动接收红外辐射 :
    的头像 发表于 09-20 11:43 ?2124次阅读

    被动红外探测器接线方法

    被动红外探测器(Passive Infrared Detector,简称PIR)是一种利用人体发出的红外辐射来检测人体移动的传感。它广泛应用于家庭、办公室、商场等场所的安全监控系统中
    的头像 发表于 09-20 11:40 ?1694次阅读

    被动红外探测器与主动红外探测器的原理比较

    被动红外探测器(Passive Infrared Detector, PIR)和主动红外探测器(Active Infrared Detector, AID)是两种常见的安全监控设备,它
    的头像 发表于 09-20 11:38 ?2607次阅读

    被动红外探测器和主动红外探测器的区别

    被动红外探测器和主动红外探测器是两种常见的安全监控设备,它们在防盗、监控、边界防护等方面有着广泛的应用。这两种探测器的主要区别在于它们检测
    的头像 发表于 09-20 11:35 ?3061次阅读

    光电传感器光电探测器的区别是什么

    于自动化控制、机器人技术、医疗成像、环境监测等领域。光电传感器可以检测光的强度、颜色、方向等属性,并根据这些信息进行相应的操作。 光电探测器概述
    的头像 发表于 09-04 14:06 ?2194次阅读

    产品推荐|有线双幕帘被动红外探测器

    红外探测器
    SASDSAS
    发布于 :2024年08月30日 21:56:06

    LoRa人体红外探测器的原理

    人体红外探测器是一种利用红外射线感应人体的安防设备,可用于追踪和检测人体位置、识别人员身份、监测人员活动等。其主要作用如下: 1. 安防监控:能够实时监控区域内的人员活动状态,对于入
    的头像 发表于 08-20 15:27 ?667次阅读
    LoRa人体<b class='flag-5'>红外</b><b class='flag-5'>探测器</b>的原理