0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

复变函数的共轭和原函数的关系

工程师邓生 ? 来源:未知 ? 作者:刘芹 ? 2023-09-07 16:43 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

复变函数的共轭和原函数的关系

复变函数的共轭与原函数之间存在着密切的关系,这是因为共轭和原函数都是复数函数中的重要概念。在数学和物理学领域中,复数函数是非常重要的,因为它们可以应用于各种重要的问题,例如电路、声波和量子力学等等。在这篇文章中,我们将会详细讨论复变函数的共轭和原函数之间的关系,并探讨它们的重要性和应用。

首先,我们需要了解什么是复变函数及其共轭。复变函数是指一个自变量为复数,而函数值也是复数的函数,其一般形式为f(z)=u(x,y)+iv(x,y),其中z=x+iy,而u和v是实数函数。当我们考虑复数函数的时候,我们需要了解其复共轭的概念。对于复数z=x+iy,其共轭定义为z* = x-iy,即实部不变,虚部取负。同样地,我们可以将复数函数f(z)的共轭定义为f*(z*),即将f(z)中的变量z替换为z*,而f(z)的实部u(x,y)和虚部v(x,y)都将发生变化。也就是说,f(z)的共轭可表示为f*(z*)=u(x,-y)-iv(x,-y)。

接下来,我们将探讨复变函数的共轭与原函数之间的关系。考虑任意一个复变函数f(z),我们可以将其分解成实部和虚部的和,即f(z)=u(x,y)+iv(x,y)。根据定义,我们可以得到f*(z*)=u(x,-y)-iv(x,-y)。然而,如果我们反过来考虑这个问题,我们可以发现一个有趣的事实:如果共轭函数f*(z*)也是一个复数函数的实部和虚部之和,那么f(z)就是该函数的原函数。

具体而言,我们可以用公式来表达这个关系。假设一个函数g(z)是由f(z)的实部和虚部组成的,即g(z)=u(x,y)-iv(x,y),那么我们可以得出以下结论:

f(z)是g(z)的原函数,当且仅当f*(z*)是g*(z*)的共轭函数。

这个结论其实也可以表示为Jordans求和公式的形式,即:

∫(f(z))dz = ∫(u+iv)(dx+idy) = ∫udx+∫vdy + i(∫vdx-∫udy)

其中,dx和dy是z的实部和虚部的微小变化,而∫表示积分。当我们对复数函数进行积分时,我们需要分别对实部和虚部进行积分,即对u和v进行积分。然后,我们将这些积分合并到一起,形成最终的积分结果。

我们可以将积分结果写成实部和虚部的形式,即:

∫(f(z))dz = ∫udx+∫vdy + i(∫vdx-∫udy) = ∫(u+iv)dx+i∫(v-u)dy

这个结果告诉我们,如果我们知道一个复数函数的实部和虚部,我们就可以使用这个公式来求出它的积分。因此,这个结果也揭示了共轭和原函数之间的关系,即如果f(z)可以表示为g(z)的实部和虚部之和,那么f(z)就是g(z)的原函数,当且仅当f*(z*)是g*(z*)的共轭函数。

共轭和原函数之间的关系在实际中有着广泛的应用。例如,在分析某些电路、信号或波形时,我们需要考虑它们的共轭和原函数之间的关系。同样地,在求解各种物理问题的过程中,我们也需要应用到这一概念。例如,量子力学中的波函数,它们的共轭和原函数也有着非常重要的作用。

总结一下,本文在第一部分中介绍了复变函数和共轭函数的概念,然后在第二部分中探讨了复变函数的共轭和原函数之间的关系。最后,我们还讨论了这个概念在物理和数学领域中的应用。复数函数是一个广泛应用于各个学科领域中的数学工具,了解其共轭和原函数之间的关系对于我们理解和解决各种问题都是十分必要的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 复变函数
    +关注

    关注

    2

    文章

    29

    浏览量

    10885
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    详解hal_entry入口函数

    当使用RTOS时,程序从main函数开始进行线程调度;当没有使用RTOS时,C语言程序的入口函数main函数调用了hal_entry函数。由于我们新建的工程是没有选用RTOS的,因此,
    的头像 发表于 07-25 15:34 ?1113次阅读

    详解RTOS中的Hook函数

    Hook函数是RTOS中的一个关键特性,通过该函数,用户可以增强对任务管理的控制,定义系统行为。
    的头像 发表于 03-24 16:14 ?445次阅读

    西门子TIA Portal中函数FC和函数块FB的相互转换

    描述 本文将介绍在西门子 TIA Portal 中使用 Add-In 插件实现函数 FC 和函数块 FB 的相互转换的方法和步骤。 第1步: 添加 PLC 设备。 选择西门子 CPU 1214C
    的头像 发表于 01-15 10:07 ?2169次阅读
    西门子TIA Portal中<b class='flag-5'>函数</b>FC和<b class='flag-5'>函数</b>块FB的相互转换

    ADS1261去哪里下载SSIDataGetNonBlocking(SSI0_BASE, &amp;junk)和HWREG(SSI0_BASE + SSI_O_DR)的原函数定义?

    ; SSI_SR_RNE)); 请问我去哪里下载SSIDataGetNonBlocking(SSI0_BASE, &junk)和 HWREG(SSI0_BASE + SSI_O_DR)的原函数定义? 谢谢!
    发表于 12-06 07:04

    同样是函数,在C和C++中有什么区别

    ,即使没有数据返回,也得写 void。 第二个函数名。 C语言的函数名绝对不能重名,除了用上 weak 这样的黑科技。同一个项目中,函数重名就会提示重复定义。 C++因为函数重载的存在
    的头像 发表于 11-29 10:25 ?959次阅读

    常用SQL函数及其用法

    SQL(Structured Query Language)是一种用于管理和操作关系数据库的编程语言。SQL 提供了丰富的函数库,用于数据检索、数据更新、数据删除以及数据聚合等操作。以下是一些常用
    的头像 发表于 11-19 10:18 ?1565次阅读

    SUMIF函数对比VLOOKUP的优势

    在Excel中,数据管理和分析是日常工作中不可或缺的一部分。SUMIF函数和VLOOKUP函数是两个非常受欢迎的函数,它们可以帮助用户快速地处理和分析数据。尽管它们都可以用于查找和汇总数据,但它们在
    的头像 发表于 11-11 09:16 ?1307次阅读

    SUMIF函数与SUMIFS函数的区别

    SUMIF函数和SUMIFS函数都是Excel中用于条件求和的函数,它们可以帮助用户根据特定的条件对数据进行求和。尽管它们的基本功能相似,但在使用场景和功能上存在一些差异。以下是对这两个函数
    的头像 发表于 10-30 09:51 ?7724次阅读

    SUMIF函数使用教程

    SUMIF函数是Excel中非常实用的函数之一,能够根据指定条件对数据进行筛选和求和操作。以下是对SUMIF函数使用方法的详细教程: 一、基本语法 SUMIF函数的基本语法为: =SU
    的头像 发表于 10-30 09:50 ?2829次阅读

    RTOS中钩子函数的用途及用法

    在很多操作系统中,都存在这样一类API函数接口:HOOK函数(也叫钩子函数)。
    的头像 发表于 10-23 16:25 ?826次阅读
    RTOS中钩子<b class='flag-5'>函数</b>的用途及用法

    如何由系统函数求频率响应

    频率响应函数表征了测试系统对给定频率下的稳态输出与输入的关系,可以通过系统函数(或称为传递函数)来求解。以下是由系统函数求频率响应的步骤:
    的头像 发表于 10-18 09:32 ?3655次阅读

    什么叫系统的频率响应函数?它和传递函数有何关系

    系统的频率响应函数(Frequency Response Function, FRF)是描述线性时不变(Linear Time-Invariant, LTI)系统在不同频率下输入和输出之间关系的数学
    的头像 发表于 10-18 09:29 ?4984次阅读

    压敏电阻压力与电阻函数关系

    压敏电阻(也称为力敏电阻)是一种将机械力转换为电信号的元件,其电阻值随外部压力的变化而变化。这种变化关系通常可以通过实验测定,并可以近似地用数学函数来表示。然而,需要注意的是,具体的函数关系
    的头像 发表于 09-25 09:30 ?2071次阅读

    怎么由系统函数判断滤波器的类型

    不同的应用场景。 系统函数的定义 系统函数,也称为传递函数,是描述线性时不变(LTI)系统输入和输出之间关系的数学模型。对于离散时间系统,系统函数
    的头像 发表于 08-15 10:30 ?4579次阅读

    面试常考+1:函数指针与指针函数、数组指针与指针数组

    在嵌入式开发领域,函数指针、指针函数、数组指针和指针数组是一些非常重要但又容易混淆的概念。理解它们的特性和应用场景,对于提升嵌入式程序的效率和质量至关重要。一、指针函数函数指针指针
    的头像 发表于 08-10 08:11 ?1523次阅读
    面试常考+1:<b class='flag-5'>函数</b>指针与指针<b class='flag-5'>函数</b>、数组指针与指针数组