0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

常见的卷积神经网络模型 典型的卷积神经网络模型

工程师邓生 ? 来源:未知 ? 作者:刘芹 ? 2023-08-21 17:11 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

常见的卷积神经网络模型 典型的卷积神经网络模型

卷积神经网络(Convolutional Neural Network, CNN)是深度学习中最流行的模型之一,其结构灵活,处理图像、音频、自然语言等各种任务表现出色。在本文中,我们将介绍常见的卷积神经网络模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。

1. LeNet

LeNet是卷积神经网络的开山祖师,是由Yan LeCunn在1998年提出的经典卷积神经网络模型。它最初是为手写体数字识别而设计的,由卷积层、池化层和全连接层组成。LeNet 的卷积层使用了sigmoid作为激活函数,而池化层使用了平均池化。LeNet是现代卷积神经网络模型的重要里程碑。

2. AlexNet

AlexNet是2012年ImageNet大规模视觉识别挑战赛冠军的模型,它被认为是卷积神经网络发展历史上的分水岭。AlexNet在其时代比之前的LeNet模型更深、更宽,使用了更多的神经元和非线性激活函数ReLU。与LeNet相比,AlexNet还使用了Dropout和数据增强技术,进一步提高了模型的泛化能力。

3. VGG

VGG是由Karen Simonyan和Andrew Zisserman在2014年提出的模型。VGG网络结构非常简单,由多个卷积层和池化层组成,几乎所有卷积层和池化层的大小都为3×3,同时使用了大量的卷积层。VGG的网络结构深度达到了16或19层,使其在ImageNet比赛中获得了显着的成绩。VGG的一个重要贡献是在卷积神经网络模型的设计中阐明了卷积层和全连接层之间的关系。

4. GoogLeNet

由Google团队开发的GoogLeNet(Inception-v1)是一种极深的网络,其特点在于具有多个不同大小的卷积核和池化的并行模块。GoogLeNet还使用了1×1的卷积层,它可以降低计算量,同时增强了网络的非线性能力。这是GoogLeNet中最大的创新。GoogLeNet结构很深,但它通过将卷积层分解成小卷积层,从而避免了参数过多的问题。

5. ResNet

ResNet是2015年由Kaiming He和他的同事提出的一种深度残差网络。ResNet在深层神经网络训练中解决了梯度消失的问题,使网络具有更高的分类精度。ResNet中使用了残差学习,即通过添加跨层连接,每个残差单元在原有基础上进行学习。这种方法让即使网络非常深,也不会影响网络的收敛,从而让网络可以更好地训练。

6. Inception

Inception由Google机器人科学家Christian Szegedy和团队提出的一种网络结构,其核心思想是在同一层中采用多个不同大小的卷积核和池化技术,并将它们合并在一起。Inception V1是第一代版本,因其多层结构和特殊设计而成为当时最先进的模型之一。

7. Xception

Xception是谷歌DeepMind在2016年提出的一种高效的卷积神经网络模型。Xception使用了深度可分离卷积层,将卷积层的空间卷积和通道卷积进行分离。通常的卷积层近似于进行了这两个操作的点积,但使用深度可分离卷积可使用更少的参数,同时减少了计算复杂度,提高了模型的性能。

结论:

卷积神经网络是深度学习中最流行的模型之一,已发展出许多经典模型。本文详细介绍了常见的卷积神经网络模型,包括LeNet、AlexNet、VGG、GoogLeNet、ResNet、Inception和Xception。每个模型都有其独特的设计思想和模型结构,可以根据应用场景选择适合的模型。在未来,卷积神经网络定将在更多领域中实现重要的进展。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    213

    文章

    29829

    浏览量

    213595
  • 卷积神经网络

    关注

    4

    文章

    369

    浏览量

    12342
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 ?724次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可
    的头像 发表于 02-12 15:51 ?992次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 ?986次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 ?971次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络 ? 人工神经网络
    的头像 发表于 01-09 10:24 ?1293次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络的实现工具与框架

    : TensorFlow是由Google Brain团队开发的开源机器学习框架,它支持多种深度学习模型的构建和训练,包括卷积神经网络。TensorFlow以其灵活性和可扩展性而闻名,适用于研究和生产环境。 特点: 灵活性: Te
    的头像 发表于 11-15 15:20 ?704次阅读

    卷积神经网络的参数调整方法

    卷积神经网络因其在处理具有空间层次结构的数据时的卓越性能而受到青睐。然而,CNN的成功很大程度上依赖于其参数的合理设置。参数调整是一个复杂的过程,涉及到多个超参数的选择和优化。 网络架构参数
    的头像 发表于 11-15 15:10 ?1264次阅读

    卷积神经网络在自然语言处理中的应用

    自然语言处理是人工智能领域的一个重要分支,它致力于使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,卷积神经网络(CNNs)作为一种强大的模型,在图像识别和语音处理等领域取得了显著成果
    的头像 发表于 11-15 14:58 ?856次阅读

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种
    的头像 发表于 11-15 14:53 ?1944次阅读

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度学习的一个分支,因其在图像处理任务中的卓越性能而受到广泛关注。 卷积神经网络
    的头像 发表于 11-15 14:52 ?875次阅读

    卷积神经网络的基本原理与算法

    卷积神经网络(Convolutional Neural Networks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks
    的头像 发表于 11-15 14:47 ?1843次阅读

    RNN模型与传统神经网络的区别

    神经网络是机器学习领域中的一种强大工具,它们能够模拟人脑处理信息的方式。随着技术的发展,神经网络的类型也在不断增加,其中循环神经网络(RNN)和传统神经网络(如前馈
    的头像 发表于 11-15 09:42 ?1183次阅读

    关于卷积神经网络,这些概念你厘清了么~

    归一化以产生一个概率分布(97.5%的猫,2.1%的豹,0.4%的虎,等等)。 这就是神经网络建模的全过程。然而,卷积核与滤波器的权重和内容仍然未知,必须通过网络训练来确定使模型能够工
    发表于 10-24 13:56

    【飞凌嵌入式OK3576-C开发板体验】RKNN神经网络-车牌识别

    LPRNet基于深层神经网络设计,通过轻量级的卷积神经网络实现车牌识别。它采用端到端的训练方式,不依赖字符分割,能够直接处理整张车牌图像,并输出最终的字符序列。这种设计提高了识别的实时性和准确性
    发表于 10-10 16:40