0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习可以分为哪几类?机器学习技术有哪些?

工程师邓生 ? 来源:未知 ? 作者:刘芹 ? 2023-08-17 16:11 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

机器学习可以分为哪几类?机器学习技术有哪些

机器学习(Machine Learning,ML)是一种通过自动化自我学习所增强的能力,从数据中获取知识的方法。可以说,机器学习是在人工智能的支持下对自然语言、图像、声音、视频等数据进行分析、分类、预测的重要方法之一。在日常生活和工作中,我们可以看到机器学习广泛应用于推荐系统、搜索引擎、语音识别、自然语言处理、计算机视觉、医学诊断等领域。

机器学习可以基于数据集和学习方式分为以下几类。

1. 监督学习

监督学习是机器学习中最常见的分类方法之一,也是最受欢迎的方法之一。在监督学习中,算法基于已经标记好的训练集来学习。与未标记的数据不同,标记的数据集附带了每个数据点的标签或标识符,这将有助于算法对未标记的数据进行分类。监督学习可以用于分类问题和回归问题。

2. 无监督学习

无监督学习是一种不需要人工输入数据标签的机器学习方式。它通过识别和学习数据中的复杂关系和结构,将其分为不同的类别或群组。无监督学习的应用领域包括聚类、关联规则学习和降维。

3. 半监督学习

在半监督学习中,一些特定的标记数据被用于在未标记的数据上进行训练,以进行更准确的分类。半监督学习的主要优点是减少了标记数据的需求,利用较少的标记,可以大大提高分类效果。

4. 强化学习

强化学习是一种机器学习方式,通常被应用于决策的问题。在强化学习中,机器学习算法通过与情境不断交互,根据任务结果给予奖励或惩罚,并最终发展出一种基于某种策略的行动模式。

除了机器学习的分类之外,它还有以下主要技术。

1. 决策树

决策树可以用于分类或回归问题。这种技术适用于在不清楚正确答案的情况下对数据进行分类。决策树是由根节点、叶节点、内部节点组成的树形结构。每个节点代表一个属性,分支代表该属性的不同取值。

2. 神经网络

神经网络在模拟生物神经系统的基础上,依照想要实现的目标对网络进行搭建和训练。这种网络可以用于分类、识别、预测、模拟等各种应用。神经网络的最大优点是可以适应复杂的非线性模型,并且可以自适应改变。

3. 支持向量机

支持向量机是一种分类器,其目标是识别出数据中的最佳超平面。该平面将数据分为多组,使得位于超平面两侧的点属于不同的类别。这种算法通常用于二分类。

总而言之,机器学习是一种重要的学科,正在助力人类处理大量数据并提高生产力。机器学习的技术和类型也在不断发展和改进,随着新的方法的涌现,人工智能的未来将会变得更加美好。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1809

    文章

    49151

    浏览量

    250622
  • 机器学习
    +关注

    关注

    66

    文章

    8510

    浏览量

    134850
  • 机器学习技术

    关注

    0

    文章

    7

    浏览量

    3056
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 ?1194次阅读

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 ?394次阅读

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器
    的头像 发表于 01-25 17:05 ?704次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 ?1254次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 ?484次阅读

    zeta在机器学习中的应用 zeta的优缺点分析

    的应用(基于低功耗广域物联网技术ZETA) ZETA作为一种低功耗广域物联网(LPWAN)技术,虽然其直接应用于机器学习的场景可能并不常见,但它可以
    的头像 发表于 12-20 09:11 ?1191次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    计算机系统自身的性能”。事实上,由于“经验”在计算机系统中主要以数据的形式存在,因此机器学习需要设法对数据进行分析学习,这就使得它逐渐成为智能数据分析技术的创新源之一,
    的头像 发表于 11-16 01:07 ?1007次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 ?1320次阅读

    eda在机器学习中的应用

    机器学习项目中,数据预处理和理解是成功构建模型的关键。探索性数据分析(EDA)是这一过程中不可或缺的一部分。 1. 数据清洗 数据清洗 是机器学习中的首要任务之一。EDA
    的头像 发表于 11-13 10:42 ?958次阅读

    具身智能与机器学习的关系

    具身智能(Embodied Intelligence)和机器学习(Machine Learning)是人工智能领域的两个重要概念,它们之间存在着密切的关系。 1. 具身智能的定义 具身智能是指智能体
    的头像 发表于 10-27 10:33 ?1104次阅读

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 ?3043次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    【「时间序列与机器学习」阅读体验】时间序列的信息提取

    。 时间序列的单调性理论是数学求导。下面是使用EWMA分析股票价格变动,以决定买入还是卖出。通过仿真数据,这种指数移动平均的技术剔除了短期波动,有助看清股票整体趋势。 通过对本章学习,对时间序列的研究目的、方法与特征了较全
    发表于 08-17 21:12

    【《时间序列与机器学习》阅读体验】+ 时间序列的信息提取

    本人有些机器学习的基础,理解起来一点也不轻松,加油。 作者首先说明了时间序列的信息提取是时间序列分析的一个重要环节,目标是从给定的时间序列数据中提取出有用的信息和特征,以支持后续的分析和预测任务,可以
    发表于 08-14 18:00

    软开关电路可以分为哪几类

    软开关电路是一种在电力电子领域中广泛应用的技术,它通过减少开关器件在开关过程中的电压和电流应力,从而降低开关损耗、提高效率、减小电磁干扰等。软开关电路可以分为以下几类: 零电压开关(Z
    的头像 发表于 08-14 11:06 ?2337次阅读

    【「时间序列与机器学习」阅读体验】+ 简单建议

    这本书以其系统性的框架和深入浅出的讲解,为读者绘制了一幅时间序列分析与机器学习融合应用的宏伟蓝图。作者不仅扎实地构建了时间序列分析的基础知识,更巧妙地展示了机器学习如何在这一领域发挥巨
    发表于 08-12 11:21