0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

车载IGBT可靠性及其寿命评估研究

贞光科技 ? 2023-05-05 17:27 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

贞光科技从车规微处理器MCU、功率器件、电源管理芯片、信号处理芯片、存储芯片、二、三极管、光耦、晶振、阻容感等汽车电子元器件为客户提供全产业链供应解决方案。

摘要

IGBT作为新能源汽车电机控制器的核心部件,直接决定了电动汽车的安全性和可靠性。本文主要介 绍采用热敏感电参数法提取IGBT结温,并结合CLTC等试验工况得出对应结温曲线,通过雨流分析、Miner线性累 积损伤准则等评估整车寿命周期内IGBT模块的热疲劳寿命,最后结合电机控制器总成的试验现状,提出总成级试 验中进行IGBT加速试验的可行性方案。

IGBT是能源变换与传输的核心器件,俗称电力电子装置 的“CPU”。在新能源汽车中,IGBT直接控制驱动系统直、交 流电的转换,决定了车辆的扭矩和最大输出功率等,是汽车 动力总成系统的“心脏”。在新能源汽车中大量使用了IGBT功率器件,例如:电控、OBC、空调系统及充电桩等,如图1所示。据统计,IGBT等功率器件占到整车成本的7%~10%。

图片



电机控制器中,IGBT将动力电池的高压直流电转换 为驱动三相电机的交流电,为电机提供动力。在汽车运行 过程中,启停、频繁加减速等会使IGBT模块功率发生变化,IGBT结温也会随之不断循环变化,温度变化产生的热应力 会使模块内部焊层之间产生蠕变热疲劳或失效。因此,IG-BT模块的结温变化是影响其工作寿命与可靠性的主要因素。本文采用热敏感电参数法提取IGBT结温,并结合CLTC等试 验工况得出对应结温曲线,通过雨流分析、Miner线性累积 损伤准则等分析和评估整车寿命周期内IGBT模块的热疲劳 寿命,提出在总成级试验中进行IGBT加速试验的可行性方案。

1 IGBT概述




1.1什么是IGBT?

IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型 晶体管) 是由双极结型晶体管 (BJT) 和金属-氧化物-半导 体场效应晶体管 (MOSFET) 复合而成的结构,如图2所示。

图片

它结合了两者的优点,具有输入阻抗高、功耗小、热稳定 性好、驱动简单、载流密度大、通态压降低等优势。

1.2 IGBT的结构

IGBT由芯片、覆 铜陶瓷衬底、基板、 散热器等通过焊接而 成,如图3所示。

图片

1.3 IGBT的热特性

热特性是IGBT功 率器件的灵魂。芯片 工作产生的热量通过 不同的介质、界面传 递到散热器,将热量 散出,传递路径的热阻用Rthjc来表示,如图4所示。

图片

IGBT模块的发热主要来源于功率损耗。功率损耗包括IGBT损耗和FWD损耗,其又分为开关损耗和导通损耗,如 图5所示。功率损耗与电流Ic、饱和压降Vce、开关频率等多 因素有关。

图片

2 IGBT可靠性要求

2.1 IGBT模块可靠性要求

对于车规级IGBT模块,由于使用环境严酷,工况复杂, 寿命要求高,因此对IGBT模块性能和可靠性提出了越来越 高的要求,如图6所示。

2.2电控总成可靠性试验现状

据统计,IGBT损坏引起的故障占电控售后问题的首位, 是电控总成的短板。根据“木桶”原理,解决IGBT失效问 题对于降低电控总成失效率非常重要。但是,目前电控总 成可靠性试验主要参考707企标,没有考虑功率器件产品自 身发热引起的温度变化,也没有考虑冷却液循环带来的温 度稳定,比较适用于低压电气产品可靠性试验,对功率器 件产品不适用。如何在电控总成试验中加速IGBT的老化磨 损将是我们需要重点研究的课题。电控问题统计柏拉图如 图7所示。

图片

2.3 IGBT模块可靠性试验

对于车规级IGBT模块,AQG 324、QC/T 1136等标准对 可靠性均有相关要求。以QC/T 1136为例,IGBT模块可靠性 包括芯片可靠性和封装可靠性,如表1所示。

图片

2.3.1功率循环试验 (主动)

1) 功率循环试验(PCsec/PCmin):检验绑定线与芯片的 连接点可靠性以及芯片与DCB焊接层的可靠性。功率循环试 验 (PCsec) 曲线如图8所示。

图片

2) 功率循环(PCmin):检验绑定线与芯片的连接点可靠性,芯片与DCB焊接层的可靠性以及DCB与Baseplate焊接 层的可靠性。

2.3.2温度循环/冲击试验 (被动)

温度循环(TC):从Baseplate底部缓慢加热整个封装,检 验具有不同热膨胀系数的材料之间连接的可靠性。热膨胀 系数如图9所示。

图片

2.4 IGBT模块失效模式

IGBT模块失效主要分为机械失效和电气失效,其中机 械失效包括绑定线、焊接层及封装/端子的老化所造成的使 用寿命终结,其主要是由功率循环产生结温变化引起。此 外,还包括过压、过流、其它因素 (如气候变化、化学腐 蚀) 所造成的失效,如图10所示。

图片

IGBT失效同样适用可靠性“浴盆”曲线,在不同阶段 呈现不同表现形式,如图11所示。本文重点研究耗损失效中由于热机械应力导致的IGBT失效,而这一部分正是IGBT耐久失效的主要原因。IGBT耗 损失效如图12所示。

图片

3 IGBT使用寿命分析与评估


3.1研究思路

根据IGBT失效模式可知,结温变化是影响其使用寿命的主要因素。评估IGBT的使用寿命就需要首先获得其在用 户工况下的结温曲线,然后结合IGBT功率循环寿命曲线, 应用累积损伤理论评估IGBT的使用寿命,具体分析步骤如 图13所示。这其中主要关键点及难点如下所述。

图片

1) 用户代表工况选取,目前采用NEDC或者CLTC工况。

2) 工况中结温测量和结温曲线的获取,实车中很难通 过布置传感器的方案来直接获取结温曲线。目前有两种可 行方法:一种是通过计算功率损耗,结合热仿真模型获得;另一种是通过间接的热敏感电参数法获取相应的结温曲线, 详见3.3.2分析。

3) 温度分布:采用雨流法分析。

4)IGBT寿命曲线,一般由IGBT模块厂家提供。

5) 寿命评估,使用温度分布数据和IGBT寿命曲线结合 损伤理论进行寿命评估。

3.2 IGBT结温测试的几种方法

3.2.1物理接触测量法

把热敏电阻或热电偶等测温元器件焊接于IGBT内部, 从而获取模块内部基板的温度。测试方便但存在较大测量 误差,如图14所示。

图片

3.2.2光学非接触测量法

先将IGBT模块打开, 除去透明硅脂,然后将IG-BT芯片表面涂黑,以提高 温度测量准确性,最后通 过热像仪等采用红外热成像 方法测试结温。属于破坏性 测量方法,如图15所示。3.2.3热敏感电参数法 利用半导体功率器件内部微观物理参数与器件温度具 有一一对应的映射关系,将芯片本身作为温度传感部件, 将其自身难测的内部温度信息反映在模块外部易测的电气 信号上,对芯片结温进行逆向提取,如图16所示。

图片

3.3试验方案

3.3.1任务曲线建立

为了保证IGBT模块使用寿命的可比性,通常采用标准 的驾驶循环作为基本工况。国内一般采用NEDC(New Eu-ropean Driving Cycle,新标欧洲循环测试) 或CLTC(China Light-duty Vehicle Test Cycle,中国轻型汽车行驶工况) 作 为基本工况。以CLTC工况为例,采集电机控制器在此工况 下的电压电流值,如图17所示。

图片

3.3.2结温曲线

本文采用热敏感电参数法反推获得IGBT模块在CLTC工 况下的结温曲线。

1) 温度系数 (K-factor) 测试

参考JESD51-1《集成电路热测试方法》 测试K系数。测 试步骤如下:设定好温度环境TL0,当器件外壳温度稳定时 给IGBT模块施加小电流 (10mA) 记录集电极和发射极间压 降大小VL0,然后将环境温度升高到THi,按上述要求记录此 时压降。两次温度值的差值除以电压差值即为K系数。

图片

通过Power Tester 1800A功率循环测试仪测试K系数 (图18),结果如下:K-Factor:-2.694mV/℃。

图片

2) 瞬态热测试 (负载)

测试原理图如图19所示。根据任务曲线得到的负载电 流,基于能量守恒,采用MATLAB软件将电流谱处理成300个恒定电流值便于实际加载测试。测试方法如下:①在IG-BT Gate上加上15V电压,使Gate完全打开,在CE之间用大 电流加热,使之达到热平衡;②在器件达到热平衡之后, 瞬间从大电流切换到小电流 (10mA),测量压降Vce;③测试 结果如图20所示,根据K系数中结温与Vce的之间的关系,得 出CLTC工况下的结温曲线,如图21所示。

图片

3.3.3温度分布 (ΔT)

Ncode雨流分析流程如图22所示。为了将任务曲线引起 的结温变化与功率循环寿命曲线进行比较,采用雨流计 数法统计不同结温变化ΔT出现的频次。温度分布ΔT如图23所示。

图片

3.3.4功率循环寿命曲线

研究发现当温度变化过程中的最高结温小于120℃时, 可以利用Coffin-Manson模型进行预测,该模型被广泛用于描 述半导体模块PC过程的失效规律。后经Arrhenuis修正,将 平均结温Tjm纳入考核范围,得到LESIT模型:

图片

随着封装技术的改进,IGBT模块的寿命有了很大提高。焊 料层疲劳成为与键合线同等重要的失效机制。2008年Bayerer考虑到功率循环试验中温度波动范围、最大结温Tjmax、模块 键合线直径D、直流端电流i、阻断电压V等因素都会对器件 寿命造成影响,得到了CIPS多参数模型:

图片

通过功率循环试验确定模型参数,绘制如图24所示的 功率循环寿命曲线。

图片

3.3.5IGBT寿命评估

根据温度分布ΔT,并参考功率循环寿命曲线,将一个 驾驶循环中所有ΔT下的损伤相对其出现的频次加权求和, 可得到一个驾驶循环下的累积损伤。该累积损伤的倒数即 是功率模块的使用寿命,即:

图片

式中:ni———在一个驾驶循环中,ΔTj出现的次数;Ni———在功率循环寿命曲线中,ΔTj对应的循环次数;Nf———功率模块使用寿命。

通常整车的使用寿命是30万公里,一个CLTC的行驶里 程大约是14.48km,则整车至少需要运行20718个CLTC才满 足寿命要求,通过计算Nf =13973605,远大于20718,满足整 车的使用寿命要求。



4电控总成IGBT加速试验


既然IGBT失效占电控总成失效的绝大多数,那么电控总 成试验中IGBT的考核是否足够?如何进行IGBT加速试验呢?

通过上述分析可知,IGBT模块的结温变化是影响其工 作寿命与可靠性的主要因素。因此在总成试验中,结温变 化的幅度和频次将直接影响其使用寿命。以冷热冲击试验 为代表的被动“功率循环试验”将是一个很好的试验方案。

由于该试验工作模式1.1,属于被动加热引起的结温变 化,其中ΔT=125℃、N0=215次,远低于行标要求。根据IG-BT热循环寿命曲线 (图25),当ΔT=125℃时寿命循环数N1约3000次,故冷热冲击试验考核仅占全寿命周期的7.2%,属 于考核偏弱,可适当增加循环数或加大温度变化范围,如 表2所示。

图片

此外,通过分析NEDC或CLTC等驾驶工况可知,主动 “功率循环”产生的结温变化频次较多,但幅度偏小。以CLTC工况为例,根据3.3.3雨流分析结果可知ΔTmax=25℃,根 据IGBT寿命曲线则需要至少107循环数。在兼顾其它部件的 考核基础上合理修正工况,如增加启停或急加/减速工况也 是一种可行的加速试验方案。

5总结


本文通过介绍IGBT模块的结构、失效模式等说明热疲 劳是影响IGBT使用寿命的主要因素。并基于此建立了IGBT使用寿命评估方法,将整车设计寿命与IGBT使用寿命结合 起来,从而能够从行驶里程的角度快速评估IGBT功率模块 是否能够满足整车使用寿命的要求。此外,针对电控总成 的试验现状,提出在总成级试验中进行IGBT加速试验的可行性。对于主动“功率循环”试验,如何优化试验工况, 提升ΔTmax进行加速试验还需要进一步研究。当前以SiC和GaN为代表的第三代宽禁带半导体材料开始逐渐应用在新能 源汽车上,其可靠性也将是我们后续关注的方向。

*免责声明:本文由作者原创。文章内容系作者个人观点,贞光科技二次整理,不代表贞光科技对该观点赞同或支持,仅为行业交流学习之用,如有异议,欢迎探讨。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 车载
    +关注

    关注

    18

    文章

    644

    浏览量

    84056
  • IGBT
    +关注

    关注

    1280

    文章

    4101

    浏览量

    255553
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何科学评估端子寿命可靠性?拓普联科以创新技术保障连接安全

    在电子设备中,端子作为关键连接部件,其可靠性直接影响产品的整体性能和使用寿命。要全面评估端子的寿命可靠性,需要从电气性能、机械耐久
    的头像 发表于 08-06 14:40 ?605次阅读
    如何科学<b class='flag-5'>评估</b>端子<b class='flag-5'>寿命</b>与<b class='flag-5'>可靠性</b>?拓普联科以创新技术保障连接安全

    普源MHO5000如何破解IGBT老化测试难题

    ,这会导致设备效率降低,能耗增加,甚至引发过热、短路等故障,对设备的可靠性构成严重威胁,缩短设备的使用寿命,进而影响整个电力系统的稳定运行。 1.2 测试的复杂与必要 进行
    的头像 发表于 07-01 18:01 ?1470次阅读
    普源MHO5000如何破解<b class='flag-5'>IGBT</b>老化测试难题

    如何评估新型电解电容材料的可靠性

    评估新型电解电容材料的可靠性,需从电气性能、环境适应寿命预测及失效分析等多维度展开,具体评估方法如下: 1、电气性能测试 使用电容测量仪
    的头像 发表于 06-23 15:52 ?163次阅读

    提供半导体工艺可靠性测试-WLR晶圆可靠性测试

    潜在可靠性问题;与传统封装级测试结合,实现全周期可靠性评估寿命预测。 关键测试领域与失效机理 WLR技术聚焦半导体器件的本征可靠性,覆盖以
    发表于 05-07 20:34

    电机微机控制系统可靠性分析

    可靠性是电机微机控制系统的重要指标,延长电机平均故障间隔时间(MTBF),缩短平均修复时间(MTTR)是可靠性研究的目标。电机微机控制系统的故障分为硬件故障和软件故障,分析故障的性质和产生原因,有
    发表于 04-29 16:14

    IGBT的应用可靠性与失效分析

    包括器件固有可靠性和使用可靠性。固有可靠性问题包括安全工作区、闩锁效应、雪崩耐量、短路能力及功耗等,使用可靠性问题包括并联均流、软关断、电磁干扰及散热等。
    的头像 发表于 04-25 09:38 ?1242次阅读
    <b class='flag-5'>IGBT</b>的应用<b class='flag-5'>可靠性</b>与失效分析

    BGA封装焊球推力测试解析:评估焊点可靠性的原理与实操指南

    成为评估焊接质量的重要手段。科准测控小编将详细介绍BGA焊球推力测试的原理、标准、仪器及测试流程,帮助工程师和研究人员掌握科学的测试方法,确保产品的可靠性。 一、检测原理 BGA焊球推力测试是通过推拉力测试机对单个焊球施加垂直或
    的头像 发表于 04-18 11:10 ?726次阅读
    BGA封装焊球推力测试解析:<b class='flag-5'>评估</b>焊点<b class='flag-5'>可靠性</b>的原理与实操指南

    电机控制器电子器件可靠性研究

    的提高,在某些特定的武器装备上,由于武器本身需要长期处于储存备战状态,为了使武器能够在随时接到战斗命令的时候各个系统处于高可靠性的正常运行状态,需要对武器系统的储存可靠性进行研究,本文着重通过试验
    发表于 04-17 22:31

    IGBT模块大规模失效爆雷看国产SiC模块可靠性实验的重要

    深度分析:从IGBT模块可靠性问题看国产SiC模块可靠性实验的重要 某厂商IGBT模块曾因可靠性
    的头像 发表于 03-31 07:04 ?520次阅读

    IGBT模块封装:高效散热,可靠性再升级!

    在电力电子领域,IGBT(绝缘栅双极型晶体管)模块作为关键的功率半导体器件,扮演着至关重要的角色。其封装技术不仅直接影响到IGBT模块的性能、可靠性和使用寿命,还关系到整个电力电子系统
    的头像 发表于 03-18 10:14 ?908次阅读
    <b class='flag-5'>IGBT</b>模块封装:高效散热,<b class='flag-5'>可靠性</b>再升级!

    厚声贴片电阻的可靠性测试与寿命

    厚声贴片电阻的可靠性测试与寿命评估是确保其在实际应用中稳定工作的重要环节。以下是对这两个方面的详细分析: 一、可靠性测试 厚声贴片电阻的可靠性
    的头像 发表于 02-25 14:50 ?482次阅读
    厚声贴片电阻的<b class='flag-5'>可靠性</b>测试与<b class='flag-5'>寿命</b>

    一文读懂芯片可靠性试验项目

    可靠性试验的定义与重要可靠性试验是一种系统化的测试流程,通过模拟芯片在实际应用中可能遇到的各种环境条件和工作状态,对芯片的性能、稳定性和寿命进行全面
    的头像 发表于 02-21 14:50 ?906次阅读
    一文读懂芯片<b class='flag-5'>可靠性</b>试验项目

    详解电子产品的可靠性试验

    可靠性试验是一种通过模拟产品在实际使用过程中可能遇到的各种环境条件和应力因素,来评估电子产品在出厂到使用寿命结束期间质量情况的科学方法。它能够在短时间内正确评估产品的
    的头像 发表于 02-20 12:01 ?686次阅读
    详解电子产品的<b class='flag-5'>可靠性</b>试验

    电动汽车可靠性提升,使用寿命媲美燃油车

    在过去,电动汽车的可靠性和使用寿命一直是消费者在购买时的主要顾虑之一。许多消费者对于电动汽车的技术成熟度、电池寿命以及长期运行稳定性持怀疑态度。然而,随着技术的不断进步和市场的日益成熟,一项最新
    的头像 发表于 02-11 10:47 ?529次阅读

    浅谈分布式电源和电动汽车的配电网可靠性评估

    电动汽车无序充电行为在时空上具有较强的随机,其充电负荷会改变日负荷变化趋势,进而影响配电网的可靠性。大规模的分布式电源和电动汽车接入配电网,势必会给配电网的可靠性带来影响,因此,需要对含分布式电源和电动汽车的配电网的
    的头像 发表于 11-04 11:16 ?796次阅读
    浅谈分布式电源和电动汽车的配电网<b class='flag-5'>可靠性</b><b class='flag-5'>评估</b>