0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

第三代半导体测试的突破 —— Micsig光隔离探头

麦科信仪器 ? 2023-03-13 17:42 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

第三代半导体碳化硅(SiC)、氮化镓(GaN)是近几年新兴的功率半导体,相比于传统的硅(Si)基功率半导体,氮化镓和碳化硅具有更大的禁带宽度,更高的临界场强,使得基于这两种材料制作的功率半导体具有耐压高、导通电阻低、寄生参数小等优异特性,应用于开关电源领域时,具有损耗小、工作频率高、可靠性高等优点,可以大大提升开关电源的效率、功率密度和可靠性等。

v2-67255524798e80efb9300593b4854d9f_720w.webp

图1:碳化硅(SiC)和氮化镓(GaN)的开关动作时间

碳化硅(SiC)和氮化镓(GaN)的开关时间都在纳秒(ns)级别,这样的显著优势是降低了开关电源的损耗,但是更短的开关时间意味着高次谐波分量的显著增加,在桥式电路应用中,高压叠加高频,上桥臂的浮地测试给工程师带来了极大的挑战。

v2-0bdeb410a8e75159e04b14511b194c24_720w.webp

图2: 碳化硅(SiC)与传统硅基IGBT的频谱分布

图2所示,相较于传统硅基IGBT,碳化硅具有更高的频率分布和高频能量。

v2-cd8232f97e1296e720ffd2474a92bc23_720w.webp

图3:上臂Vgs电压叠加共模干扰电压Vcm示意图

图3所示的半桥电路中,Vgs电压浮空在摆动的Vcm之上,Vcm即下管的Vds,随着下管QL的导通与关断,Vcm在0V和1000V之间跳动,一般来说Vgs在20V以内,远远小于Vcm ,在测量时,我们关心的是Vgs的信号特征,这是个差模信号,此时Vcm成了共模干扰,我们不希望它出现在我们的测试信号中,然而事与愿违,共模干扰在电源电路中如影子一般甩不掉,无论是电源设计阶段还是测试分析阶段,只能想办法尽量抑制它的份量:提升差模信号,抑制共模信号。抑制共模信号的能力有一个专门的指标,即共模抑制比(CMRR)。

常见的高压差分探头在100KHz时,CMRR>60dB,在1MHz时,CMRR>50dB,但是当频率到达100MHz时,一般只能做到20dB左右。图2的频谱看出,碳化硅在100MHz时仍有巨大的能量,这可以很好的理解为什么传统的高压差分探头无法胜任这项测试工作,用其测试所呈现出波形的准确性为什么经常受到质疑。

v2-01a553adb27188245b1c4f3a034fd86e_720w.webp

图4:碳化硅导通瞬间的Vgs信号波形

图4中,黄色为高压差分探头在碳化硅导通瞬间的测试波形。可以看出信号产生了严重的震荡,在红圈处的信号电压已经超过碳化硅的Vgs极限值,这将导致器件的损坏,但是电路工作一切正常,这明显是不符合逻辑的。

v2-d933a040c95782194af64a34831e1c91_720w.webp

图5:碳化硅关断期间的Vgs信号波形

图5所示,黄色是高压差分探头在碳化硅关断期间的信号波形,红圈处的电压已经远远超过碳化硅所能承受的负压(一般在 -10V以内),但是器件并没有损坏,这明显也是不符合逻辑的。

真实的Vgs信号是什么样的?器件的性能是否达到了设计预期?开关电源电路中的碳化硅或者氮化镓器件参数是否有安全冗余?开关损耗计算的结果是否真实?工程师的一系列疑问都指向一个共同的点:第三代半导体的测试难题。

Micsig基于SigOFIT?专有技术的光隔离探头正好破解了这个难题。

pYYBAGQO286AX9VWAAIizLrzI1c523.png

图6:Micsig基于SigOFIT?专有技术的光隔离探头

在图4和图5中,蓝色的波形为Micsig光隔离探头测得的结果,可以看出目标板的Vgs信号非常平滑,电路参数设计的十分完美,碳化硅器件在安全参数范围内运行。光隔离探头能观察到真实的波形形态,得益于极高的共模抑制能力,Micsig光隔离探头在200MHz时,仍然有80dB的共模抑制比。

除了碳化硅之外,在针对氮化镓的测试环境下,光隔离探头更具有无与伦比的优势。氮化镓相比碳化硅具有更短的开关时间,对测试探头的共模抑制能力要求更高,这正是光隔离探头的专长。差分探头由于引线一般不少于几十厘米,具有很大的寄生电容天线效应,当用差分探头触及氮化镓控制极时,剧烈的震荡会引起氮化镓器件瞬间烧毁爆炸(俗称炸管),很多做氮化镓电路设计的工程师抱怨说,一天炸管几次是常有的事,一碰就炸,人都搞得神经兮兮的。Micsig光隔离探头采用MCX连接,引线极短,几乎没有天线效应,寄生电容在几pF之内,测试氮化镓十分安全。

Micsig光隔离探头采用独家SigOFIT?信号光纤隔离技术,在高压测试情况下,很好的解决了人身安全和后端仪器的安全问题。光隔离探头共模电压可达60KVpk以上(完全由测试环境的绝缘物决定),光纤长度超过10米对信号也没有影响,用户可以定制需要定制长度,这是电缆传输信号的所有其他探头不具有的特质。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 测试
    +关注

    关注

    8

    文章

    5740

    浏览量

    129157
  • 半导体
    +关注

    关注

    335

    文章

    29037

    浏览量

    240242
  • 示波器
    +关注

    关注

    113

    文章

    6733

    浏览量

    189784
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    破产、并购、产能扩张减速——盘点2024年全球第三代半导体行业十大事件

    带来更大的未来增长空间。但与此同时,碳化硅产业在经历了过去几年的大规模扩产后,2024年大量产能落地,而需求增长不及预期,产业加速进入了淘汰赛阶段。 ? 过去一年,第三代半导体产业中发生了不少大事件,有并购,有技术突破,但
    的头像 发表于 01-05 05:53 ?1.7w次阅读
    破产、并购、产能扩张减速——盘点2024年全球<b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>行业十大事件

    电镜技术在第三代半导体中的关键应用

    第三代半导体材料,以碳化硅(SiC)和氮化镓(GaN)为代表,因其在高频、高效率、耐高温和耐高压等性能上的卓越表现,正在成为半导体领域的重要发展方向。在这些材料的制程中,电镜技术发挥着不可或缺的作用
    的头像 发表于 06-19 14:21 ?203次阅读
    电镜技术在<b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>中的关键应用

    第三代半导体的优势和应用领域

    随着电子技术的快速发展,半导体材料的研究与应用不断演进。传统的硅(Si)半导体已无法满足现代电子设备对高效能和高频性能的需求,因此,第三代半导体材料应运而生。
    的头像 发表于 05-22 15:04 ?899次阅读

    麦科信获评CIAS2025金翎奖【半导体制造与封测领域优质供应商】

    制造与封测领域优质供应商榜单。本届大会以\"新能源芯时代\"为主题,汇集了来自功率半导体第三代材料应用等领域的行业专家与企业代表。 作为专注电子测试测量领域的高新技术企业,麦科
    发表于 05-09 16:10

    第三代半导体器件封装:挑战与机遇并存

    一、引言随着科技的不断发展,功率半导体器件在电力电子系统、电动汽车、智能电网、新能源并网等领域发挥着越来越重要的作用。近年来,第三代宽禁带功率半导体器件以其独特的高温、高频、高耐压等特性,逐渐
    的头像 发表于 02-15 11:15 ?869次阅读
    <b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>器件封装:挑战与机遇并存

    第三代半导体厂商加速出海

    近年来,在消费电子需求带动下,加上新能源汽车、数据中心、伏、风电、工业控制等产业的兴起,以碳化硅、氮化镓为代表的第三代半导体厂商发展迅速。
    的头像 发表于 01-04 09:43 ?899次阅读

    第三代半导体对防震基座需求前景?

    随着科技的发展,第三代半导体产业正处于快速扩张阶段。在全球范围内,各国都在加大对第三代半导体的投入,建设了众多新的晶圆厂和生产线。如中国,多地都有相关大型项目规划与建设,像苏州的国家
    的头像 发表于 12-27 16:15 ?643次阅读
    <b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>对防震基座需求前景?

    第三代半导体产业高速发展

    当前,第三代半导体碳化硅(SiC)和氮化镓(GaN)功率器件产业高速发展。其中,新能源汽车市场的快速发展是第三代半导体技术推进的重要动力之一,新能源汽车需要高效、高密度的功率器件来实现
    的头像 发表于 12-16 14:19 ?889次阅读

    第三代宽禁带半导体:碳化硅和氮化镓介绍

    ? 第三代宽禁带功率半导体在高温、高频、高耐压等方面的优势,且它们在电力电子系统和电动汽车等领域中有着重要应用。本文对其进行简单介绍。 以碳化硅(SiC)和氮化镓(GaN)为代表的宽禁带化合物半导体
    的头像 发表于 12-05 09:37 ?1535次阅读
    <b class='flag-5'>第三代</b>宽禁带<b class='flag-5'>半导体</b>:碳化硅和氮化镓介绍

    第三代半导体氮化镓(GaN)基础知识

    第三代半导体氮化镓(GaN)。它以其卓越的性能和广泛的应用领域,在科技界掀起了一阵热潮。 ? 今天我要和你们聊一聊半导体领域的一颗“新星”——第三代
    的头像 发表于 11-27 16:06 ?1854次阅读
    <b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>氮化镓(GaN)基础知识

    案例分享:隔离探头在大功率直流稳压电源测试中的应用

      第三代半导体材料,尤其是碳化硅(SiC)和氮化镓(GaN),在电动汽车、可再生能源、工业电源、军事和航空航天、快充技术、无线通信、消费电子等领域中展现出巨大的市场前景。这些材料具有高热导率、高
    发表于 10-31 17:04

    江西萨瑞微荣获&amp;quot;2024全国第三代半导体制造最佳新锐企业&amp;quot;称号

    快速发展与创新实力在2024全国第三代半导体产业发展大会上,江西萨瑞微电子科技有限公司荣获"2024全国第三代半导体制造最佳新锐企业"称号。这一荣誉不仅是对公司技术创新和产业化
    的头像 发表于 10-31 08:09 ?1020次阅读
    江西萨瑞微荣获&amp;quot;2024全国<b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>制造最佳新锐企业&amp;quot;称号

    第三代半导体的优势和应用

    随着科技的发展,半导体技术经历了多次变革,而第三代半导体材料的出现,正在深刻改变我们的日常生活和工业应用。
    的头像 发表于 10-30 11:24 ?2219次阅读

    万年芯荣获2024第三代半导体制造最佳新锐企业奖

    10月22日,2024全国第三代半导体大会暨最佳新锐企业奖颁奖典礼在苏州隆重举办。这场备受瞩目的行业盛会汇聚了众多行业精英,共有30+位企业高管演讲、50+家展商现场展示。在这场行业盛会上,江西万年
    的头像 发表于 10-28 11:46 ?817次阅读
    万年芯荣获2024<b class='flag-5'>第三代</b><b class='flag-5'>半导体</b>制造最佳新锐企业奖

    第三代半导体半导体区别

    半导体是指导电性能介于导体和绝缘体之间的材料,具有独特的电学性质,是电子工业中不可或缺的基础材料。随着科技的进步和产业的发展,半导体材料经历了从第一
    的头像 发表于 10-17 15:26 ?2799次阅读