0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何应用Anomalib在数据集不平衡的情况下检测缺陷?

SDNLAB ? 来源:英特尔物联网 ? 2023-04-03 17:48 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

当您想进行自动缺陷检测,但数据集不平衡时,Anomalib 是一个很好的工具。

在这个示例中,我们将介绍一个令人振奋的 Dobot 机器人工业用例,其中的机械臂用于教育、工业和智能用例中。如果您没有可用的 Dobot 机器人,您可以简单地修改 notebook,避开、注释或改变机器人代码,使其为您所用。

让我们开始吧

为了解 Anomalib 的工作原理,我们将看一个检查彩色立方体的生产线。其中一些立方体会有洞或缺陷,需要从传送带上取下。由于这些缺陷在生产线上并不常见,我们将为我们的 AI 模型拍摄一些图像。

安装:

按照以下步骤使用源文件安装 Anomalib:

1.使用 Python 3.8 版本创建运行 Anomalib + Dobot DLL 的环境

对于 Windows,使用以下代码:

python -m venv anomalib_env

anomalib_envScriptsactivate

对于 Ubuntu:

python3 -m venv anomalib_env

source anomalib_env/bin/activate

2.从 GitHub 存储库中安装 Anomalib 及 OpenVINO 要求(在这篇博文中,我们将不使用 pip 安装命令):

python –m pip install –upgrade pip wheel setuptools

cd anomalib

pip install -e . [openvino]

3.安装 Jupyter Lab 或 Jupyter Notebook:

pip install notebook

pip install ipywidgets

4.然后连接您的 USB 摄像头,使用简单的摄像头应用验证它在正常工作。然后,关闭该应用。

可选:如果您可以访问 Dobot,请实施以下步骤:

1.安装 Dobot 要求。

2.检查 Dobot 的所有连接状态,并使用 Dobot Studio 验证它在正常工作。

3.将通风配件安装在 Dobot 上,并使用 Dobot Studio 验证它在正常工作。

4.在 Dobot Studio(图 2)中,点击“Home”按钮,找到:

校准坐标:立方体阵列的左上角初始位置。

位置坐标:机械臂应将立方体放在传送带上方的位置。

异常坐标:释放异常立方体的位置。

然后在 notebook 中替换这些坐标。

5.如需使用机器人运行 notebook,从这里下载 Dobot API 和驱动程序文件,并将它们添加到存储库 Anomalib 文件夹的 notebooks/500_uses_cases/dobot 中。

d7a4bfcc-cee3-11ed-bfe3-dac502259ad0.png

|图 2:Dobot Studio 界面。

注:如果没有机器人,您可以转到另一个 notebook,如 501b notebook,通过这个链接下载数据集,并在那里尝试训练和推理。

01

Notebook 的数据采集和推理

下面,我们需要使用正常的数据集创建文件夹。在这个示例中,我们创建了一个彩色立方体的数据集,并为异常情况添加一个黑色圆圈贴纸,以模拟盒子上的洞或缺陷(图 3)。对于数据采集和推理,我们将使用 501a notebook。

d7e3d928-cee3-11ed-bfe3-dac502259ad0.png

|图 3:用于第一轮训练的数据集。

在采集数据时,请务必将 acquisition 变量设置 为 True 来运行notebook,并为没有异常的数据定义“正常”文件夹,为异常图像定义“异常”文件夹。数据集将直接在 Anomalib 克隆的文件夹中创建,所以我们将看到 Anomalib/dataset/cubes 文件夹。

如果您没有机器人,您可以修改代码以保存图像或使用下载的数据集进行训练。

推理:

对于推理,acquisition 变量应该是 False,我们不会保存任何图像。我们将读取采集到的视频帧,使用 OpenVINO 运行推理,并决定放置立方体的位置:对于正常立方体,放置在传送带上;对于异常立方体,放置在传送带外。

我们需要识别采集标记 — 采集模式为 True,推理模式为 False。在采集模式下,要注意是创建正常还是异常文件夹。例如,在采集模式下,notebook 会将每张图像保存在 anomalib/datasets/cubes/{FOLDER} 中,以便进一步训练。在推理模式下,notebook 不会保存图像;它将运行推理并显示结果。

训练:

对于训练,我们将使用 501b notebook。在这个 notebook 中,我们将使用 PyTorch Lighting,并使用“Padim”模型进行训练。这种模型有几个优点:我们不需要 GPU,只用 CPU 就可以完成训练过程,而且训练速度也很快。

现在,让我们深入了解一下训练 notebook!

02

导入

在这一部分,我们将解释用于该示例的软件包。我们还将从 Anomalib 库中调用需要使用的软件包。

配置:

有两种方法来配置 Anomalib 模块,一种是使用配置文件,另一种是使用 API。最简单的方法是通过 API 查看该库的功能。如果您希望在您的生产系统中实施 Anomalib,请使用配置文件 YAML 文件,它是核心训练与测试进程,包含数据集、模型、试验和回调管理(图 4)。

在接下来的部分,我们将描述如何使用 API 配置您的训练。

d838d310-cee3-11ed-bfe3-dac502259ad0.png

|图 4:训练和验证模块。

数据集管理器:

通过 API,我们可以修改数据集模块。我们将准备数据集路径、格式、图像大小、批量大小和任务类型。然后,我们使用以下代码将数据加载到管道中。

i, data = next(enumerate(datamodule.val_dataloader()))

模型管理器:

对于异常检测模型,我们使用 Padim,您也可以使用其他 Anomalib 模型,如:CFlow、CS-Flow、DFKDE、DFM、DRAEM、FastFlow、Ganomaly Patchcore、Reverse Distillation 和 STFPM。此外,我们使用 API 设置了模型管理器;使用 anomalib.models 导入 Padim。

回调(Callbacks)管理器:

为了适当地训练模型,我们需要添加一些其他的“非基础”逻辑,如保存权重、尽早终止、以异常分数为基准以及将输入/输出图像可视化。为了实现这些,我们使用回调Callbacks。Anomalib 有自己的Callbacks,并支持 PyTorch Lightning 的本地callbacks。通过该代码,我们将创建在训练期间执行的回调列表。

训练:

在设置数据模块、模型和callbacks之后,我们可以训练模型了。训练模型所需的最后一个组件是 pytorch_lightning Trainer 对象,它可处理训练、测试和预测管道。复制链接,查看 notebook 中的 Trainer 对象示例。

验证:

我们使用 OpenVINO 推理进行验证。在之前的导入部分,我们导入了 anomalib.deploy 模块中的 OpenVINOInferencer。现在,我们将用它来运行推理并检查结果。首先,我们需要检查 OpenVINO 模型是否在结果文件夹中。

预测结果:

为了实施推理,我们需要从 OpenVINOinference(我们可在其中设置 OpenVINO 模型及其元数据)中调用 predict 方法,并确定需要使用的设备:

predictions = inferencer.predict(image=image)

预测包含与结果有关的各种信息:原始图像、预测分数、异常图、热图图像、预测掩码和分割结果(图 5)。根据您要选择的任务类型,您可能需要更多信息。

d84f324a-cee3-11ed-bfe3-dac502259ad0.png

|图 5:预测结果

最后,我们采用 Dobot 机器人的缺陷检测用例基本是这样的。

03

使用您自己的数据集的技巧和建议

数据集转换:

如果您想提高模型的准确性,您可以在您的训练管道中应用数据转换。您应该在 config.yaml 的 dataset.transform_config 部分提供增强配置文件的路径。这意味着您需要有一个用于 Anomalib 设置的 config.yaml 文件,以及一个可供 Anomalib config yaml 文件使用的单独 albumentations_config.yaml 文件。

强大的模型:

异常检测库并非无所不能,在碰到麻烦的数据集时也可能会失效。好消息是:您可以尝试 13 个不同的模型,并能对每个实验的结果进行基准测试。您可以将基准测试入口点脚本用于其中,并将配置文件用于基准测试目的。这将帮助您为实际用例选择最佳模型。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    213

    文章

    29949

    浏览量

    214470
  • dll
    dll
    +关注

    关注

    0

    文章

    116

    浏览量

    46288
  • python
    +关注

    关注

    56

    文章

    4832

    浏览量

    87791
  • Ubuntu系统
    +关注

    关注

    0

    文章

    92

    浏览量

    4348

原文标题:如何应用Anomalib在数据集不平衡的情况下检测缺陷?-- 下篇

文章出处:【微信号:SDNLAB,微信公众号:SDNLAB】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    无轴承异步电机的不平衡振动补偿控制

    异步电机转子的不平衡振动位移幅度,在稳态能基本消除不平衡振动激振力对轴心轨迹的影响,从而有效提高转子的悬浮运行控制精度。所给不平衡振动补偿控制策略是有效、可行的 纯分享帖,点击下
    发表于 07-14 17:37

    轮毂电机不平衡电磁力对车轮定位参数的影响

    [摘要] 轮毂电机驱动电动汽车将电机、减速机构和制动器等高度集成于车轮内。不同路面激励的轮胎跳动、载荷不均和轴承磨损等造成电机气隙沿圆周分布不均,其所产生的不平衡电磁力将会通过减速机构或直接传递
    发表于 06-10 13:17

    伺服电机三相不平衡原因及解决方法

    系统分析造成伺服电机三相不平衡的六大根源,并提供针对性的解决方案,帮助工程师从源头消除隐患。 一、电源质量缺陷引发的相位失衡 电网电压波动是导致三相不平衡的首要因素。当输入电压偏差超过额定值的±5%时,电机绕组阻抗
    的头像 发表于 05-06 07:40 ?597次阅读
    伺服电机三相<b class='flag-5'>不平衡</b>原因及解决方法

    3A325薄型平衡不平衡变压器Anaren

    3A325薄型平衡不平衡变压器Anaren 3A325 是一款由 Anaren Microwave 生产的表面贴装(SMD)巴伦变压器(Balun Transformer),适用于无线通信和射频
    发表于 03-11 09:31

    伺服电子变压器输出电压不平衡的原因及相应的解决方案

    伺服电子变压器在工业自动化系统中也是至关重要的,它们负责将输入的交流电压转换成不同级别的交流电压,以精确驱动和控制伺服电机。然而,在实际应用中,伺服电子变压器输出电压不平衡的问题时有发生,这不
    的头像 发表于 02-23 12:19 ?826次阅读
    伺服电子变压器输出电压<b class='flag-5'>不平衡</b>的原因及相应的解决方案

    B0430J50100AHF超小型不平衡平衡变压器

    B0430J50100AHF超小型不平衡平衡变压器B0430J50100AHF是Anaren推出的一款超小型、低成本且低轮廓的不平衡平衡变压器,专为满足新一代A/D和D/A转换器I
    发表于 02-08 09:26

    平衡电阻器可以改为不平衡

    在电子电路中,平衡电阻器与不平衡电阻器各自扮演着重要的角色。平衡电阻器主要用于实现电路的平衡和稳定性,减少噪音和干扰,提高信号质量。而不平衡
    的头像 发表于 01-30 14:31 ?1290次阅读

    朗凯威探秘磷酸铁锂电池组电压不平衡的“前世今生”

    磷酸铁锂电池组133-2632-1310电压不平衡在实际使用中有多种具体表现。其中最明显的是单体电池间电压差异明显。在正常工作状态,单体电池间的电压差应不超过 0.1V。如果超出这个范围,就可能出现电压不平衡
    的头像 发表于 11-29 16:51 ?3916次阅读
    朗凯威探秘磷酸铁锂电池组电压<b class='flag-5'>不平衡</b>的“前世今生”

    单元不平衡永久故障阈值的单元类型特定设置

    电子发烧友网站提供《单元不平衡永久故障阈值的单元类型特定设置.pdf》资料免费下载
    发表于 10-18 11:21 ?0次下载
    单元<b class='flag-5'>不平衡</b>永久故障阈值的单元类型特定设置

    平衡校正和振动测量有关吗?

    平衡校正和振动测量有关吗?动平衡和测量振动是相关但不同的概念。振动检测是一种通过监测机械系统的振动来识别问题的方法。它涉及测量振动的振幅、频率、相位和谱分析等参数。动平衡是一种专门针
    的头像 发表于 10-18 11:21 ?538次阅读
    动<b class='flag-5'>平衡</b>校正和振动测量有关吗?

    LM4871功放IN+/-两端、OUT+/-两端,在上电静态时电压不平衡怎么解决?

    LM4871之前为解决POP声,测量时发现,LM4871功放IN+/-两端、OUT+/-两端,在上电静态时电压不平衡,暂判断因此出现了更为明显的POP声,若将反馈电阻调小则会小些许(Rf=30K
    发表于 10-12 08:56

    电容器不平衡保护动作原因分析

    电容器不平衡保护动作的原因多种多样,主要包括以下几个方面: 1. 电容器组内部故障 电容量不平衡 :电容器组中的电容器由于老化、损坏或制造差异,可能导致三相电容量不平衡。当三相之间电容值差异较大
    的头像 发表于 09-20 15:43 ?3031次阅读

    可不可以采用+12V,-5V这样不平衡的正负电源给TL084供电?

    运放TL084采用正负电源供电,负电源的作用只是为了能输出0V(没有负电压输出),那么负电源的功耗很小,可不可以采用+12V,-5V这样不平衡的正负电源给TL084供电?
    发表于 08-28 07:33

    电桥电路不平衡时是什么电路

    电桥电路是一种测量电阻的电路,它利用了惠斯通电桥的原理。当电桥电路不平衡时,它是一种具有特定特性的电路,这种特性可以用于测量电阻、电容、电感等元件的参数。 电桥电路的基本原理 电桥电路是一种由四个
    的头像 发表于 08-27 14:31 ?1912次阅读

    LCR测试仪如何测量不平衡度?

    在电路设计和维修中,了解电路元件的特性是非常重要的。LCR测试仪就是一种常用的检测仪器,它可以测量电感(L)、电容(C)和电阻(R)的参数。其中,测量不平衡度是LCR测试仪的一项重要功能。那么
    的头像 发表于 08-26 16:49 ?1119次阅读
    LCR测试仪如何测量<b class='flag-5'>不平衡</b>度?