0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SiC,准备好爆发了吗?

youyou368 ? 来源:电子元器件超市 ? 2023-03-28 10:08 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

自1991 年第一批晶圆发布后,SiC 的发展相当缓慢,仅仅 20 年后就推出了第一个全 SiC 商用 MOSFET。最终,是特斯拉及其 400V 逆变器在 2018 年将这种复合材料推向了前沿。从那时起,人们对具有高功率密度、效率和高温性能的基于 SiC 的产品的兴趣越来越大,令人高兴的汽车细分市场正在寻找一种解决方案来满足引擎盖下应用的要求。

出于与汽车相同的原因,碳化硅已开始在能源领域找到自己的位置,并可能 在未来十年内进入高功率工业应用。然而,这并不是 SiC 故事的结局。随着特斯拉宣布其未来动力总成中减少碳化硅,市场价值和技术都可能根据 OEM 的选择而改变。

按照yole预测,全球SiC器件产能到2027年将增长两倍,排名前五的公司是:ST、英飞凌、Wolfspeed、onsemi和ROHM。Yole Intelligence的分析师预测,未来五年SiC器件市场价值将达到60亿美元,并可能在2030年代初达到100亿美元。2022年,器件和晶圆级领先的SiC厂商如下图所示:

434a8388-cd09-11ed-bfe3-dac502259ad0.png

在其报告中,Yole SystemPlus 分析了当前可用的器件设计技术。该公司比较了多达 14 个横截面的 1200 V 晶体管。大多数厂商都采用平面工艺(onsemi、Wolfspeed、Microsemi……),只有两家选择了设计复杂得多的沟槽 MOSFET(ROHM Semiconductor 和 Infineon)。ST Microelectronics 和 Mitsubishi 等其他市场领导者也押注于沟槽工艺,但迄今未获成功。

Yole SystemPlus 深入挖掘,揭示了两个领先厂商在三代晶体管中采用的设计策略的演变。通过从平面(第 2 代)工艺切换到沟槽工艺(第 3 代),ROHM 在短短四年内将 FoM(品质因数,Rdson*Qg)和间距尺寸减小了 50%。使用下一代更先进的沟槽工艺,这些结果得到了进一步改善。与此同时,Wolfspeed 更倾向于专注于采用扩散 MOS 工艺的平面设计,该工艺在第一代和第三代之间将芯片尺寸和 FoM 减少了 50%。在比较两个竞争对手的最新一代晶体管时,一切都归结为间距尺寸的减小,RHOM 的沟槽版本在这方面遥遥领先。

然而,这种沟槽 MOSFET 更复杂,因此制造成本更高。此外,由于此设计更难控制栅极氧化层厚度,因此栅极沟槽中的薄弱区域可能会挑战组件可靠性。

43579dde-cd09-11ed-bfe3-dac502259ad0.png

尽管数字和新兴的并购活动往往表明人们对这种复合材料越来越感兴趣,但只有找到解决目前阻碍 SiC 更广泛采用的三个主要障碍的解决方案,才能确定其在电力电子领域的预期地位。

一、成本

迄今为止,SiC 模块的成本无法提供在除高端以外的电动汽车上普及该技术的可能性。出于同样的原因,以 3300 V 为其高功率应用目标的工业部门仍然不愿涉足 SiC,并且仍然依赖于 Si IGBT 选项。根据 Yole SystemPlus 的分析,基板制造和外延阶段的成本占晶圆总成本的 59%(1200 V SiC MOSFET 的平均成本),其次是前端工艺的良率损失 (24%)。在裸片安培成本水平上,Wolfspeed 和 ROHM Semiconductor 表现最好,证实了对整个供应链的控制在竞争中具有明显的优势。为了降低成本,正在考虑几种情况。由 Wolfspeed、II-IV Incorporated、现在是 Coherent,而 SiCrystal 正在进行中。然而,质量问题仍在延迟实际启动,现在预计在 2025 年。与 Si 生产线兼容的新兴技术工程 SiC 衬底,以及晶圆工艺创新也在开发中。

二、可靠性

尽管集成到商业化的汽车系统(特斯拉和 Lucid Air 逆变器/丰田 Mirai II 升压转换器),但没有足够的证据证明 SiC 产品的长期可靠性。这是导致工业部门持观望态度的另一个论点。

三、封装

要充分受益于 SiC 技术优势,必须找到合适的封装解决方案。问题就在这里:虽然在 Si IGBT 的情况下有多种经过验证的选择,但 SiC MOSFET 的封装选项仍处于起步阶段,并且仅展示了 Denso、Wolfspeed 和 ST Microelectronics 开发的少数设计。这些设计包括高温兼容和低损耗材料,无论是在基板(具有良好散热性能的材料,如 AlN 和 AMB-Si3N4)、封装(高温环氧树脂或硅凝胶)、芯片附着(如银烧结) 或互连(具有低电感互连,例如顶部 Cu 引线框)。在提供标准化解决方案之前,还有很多工作要做。

4368e684-cd09-11ed-bfe3-dac502259ad0.png

Wolfspeed大幅扩产带来的新变数

2 月 1 日,Wolfspeed 和采埃孚宣布建立战略合作伙伴关系,目标是面向移动、工业和能源应用的未来碳化硅半导体系统和设备。实现这一目标的一种方法是在欧洲建立重要的 SiC 生产能力。

Wolfspeed 在德国的新工厂将成为世界上最大的 8 英寸专用 SiC 器件工厂,也是欧洲唯一一家能够大批量生产 8 英寸 SiC 晶圆的工厂(不包括 STMicroelectronics 的一些 SiC 兼容产能)。此举将巩固 Wolfspeed 在 SiC 晶圆领域的领导地位,同时也将目标锁定在目前由欧洲公司主导的 SiC 器件市场。

通过其位于美国纽约的现有晶圆厂,Wolfspeed 是世界上唯一一家可以量产 8 英寸 SiC 晶圆的公司。这种主导地位将在未来两到三年内持续,直到更多公司开始建设产能——最早的是意法半导体将于 2024-5 年在意大利开设的 8 英寸 SiC 工厂。

美国在 SiC 晶圆领域处于领先地位,Wolfspeed 与 Coherent (II-VI)、onsemi 和 SK Siltron css 一起,后者目前正在扩建其在密歇根州的 SiC 晶圆生产设施。另一方面,欧洲在 SiC 器件方面处于领先地位。

“英飞凌科技和意法半导体等欧洲企业通过从美国、欧洲和中国采购 6 英寸晶圆来保持这一领先地位。但随着 Wolfspeed 通过内部独家供应 8 英寸晶圆扩展到欧洲,欧洲公司能够采购更大直径的晶圆变得越来越重要。STMicroelectronics 的意大利工厂将有助于创造一些供应,但 Wolfspeed 的直接主导地位使其在获得更多 SiC 设备业务方面具有竞争优势。”Yole Intelligence 专业从事化合物半导体和新兴基板的技术与市场高级分析师说。

更大的晶圆尺寸是有益的,因为更大的表面积会增加单个晶圆可以生产的器件数量,从而降低器件级别的成本。截至 2023 年,我们已经看到多家 SiC 厂商展示了用于未来生产的 8 英寸晶圆。

43b283de-cd09-11ed-bfe3-dac502259ad0.png

Yole Intelligence 电源和无线部门化合物半导体和新兴基板活动的团队首席分析师Ezgi Dogmus 博士则强调:“然而,其他主要 SiC 厂商决定不再只专注于 8 英寸,而是将战略重点放在 6 英寸晶圆上。虽然转向 8 英寸是许多 SiC 器件公司的议程,但更成熟的 6 英寸衬底的预期产量增加——以及随后成本竞争的增加,可能会抵消 8 英寸的成本优势——导致 SiC未来专注于两种尺寸的玩家。例如,Infineon Technologies 等公司并没有立即采取行动来提高 8 英寸产能,这与 Wolfspeed 的战略形成鲜明对比”。

然而,Wolfspeed 与涉及 SiC 的其他公司不同,因为它只专注于该材料。例如,英飞凌科技、安森美和意法半导体——它们是电力电子行业的领导者——在硅和氮化镓市场也有成功的业务。这个因素也影响了 Wolfspeed 和其他主要 SiC 厂商的对比战略。

Yole Intelligence 认为,到 2023 年,汽车行业将占 SiC 器件市场的 70% 至 80%。随着产能的提升,SiC 器件将更容易用于电动汽车充电器和电源等工业应用,以及绿色能源应用比如光伏和风能。然而,Yole Intelligence 的分析师预测,汽车仍将是主要驱动力,其市场份额预计在未来 10 年内不会发生变化。当各地区引入电动汽车目标以实现当前和不久的将来的气候目标时,情况尤其如此。

硅 IGBT 和硅基 GaN 等其他材料也可能成为汽车市场 OEM 的一种选择。Infineon Technologies 和 STMicroelectonics 等公司正在探索这些基板,特别是因为它们具有高成本竞争力并且不需要专门的晶圆厂。Yole Intelligence 在过去几年一直密切关注这些材料,并将它们视为未来 SiC 的潜在竞争者。

Wolfspeed以8英寸产能进军欧洲,无疑将瞄准目前由欧洲主导的SiC器件市场。但随着不同策略的发挥,未来几年市场将如何演变将是一件有趣的事情。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    150

    文章

    8691

    浏览量

    221181
  • 晶体管
    +关注

    关注

    77

    文章

    10030

    浏览量

    142241
  • SiC
    SiC
    +关注

    关注

    32

    文章

    3241

    浏览量

    65633

原文标题:SiC,准备好爆发了吗?

文章出处:【微信号:jbchip,微信公众号:电子元器件超市】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    深爱半导体 代理 SIC213XBER / SIC214XBER 高性能单相IPM模块

    SIC213XBER / SIC214XBER 全新高性能单相IPM模块系列!我们以全新ESOP-9封装与新一代技术,赋能客户在三大核心维度实现飞跃性提升:效率跃升、空间减负、成本优化与可靠性保障
    发表于 07-23 14:36

    蓝牙6.0,厘米级定位+超低功耗,你的设备该升级了!

    还在为蓝牙设备定位不准、频繁充电烦恼?蓝牙6.0来了!它用“厘米级精准定位”重新定义物联体验,更以超低功耗、多重安全革新,成为下一代智能硬件的标配。你的设备准备好“开挂”了吗?蓝牙6.0的三
    的头像 发表于 05-14 11:30 ?1409次阅读
    蓝牙6.0,厘米级定位+超低功耗,你的设备该升级了!

    求助,关于FX3的发送问题求解

    以下是FPGA抓到的波形,FPGA只通过3014发送一组数据,上位机接收!FLAGA定义为当前线程准备好,FLABG定义为当前线程水印, 我的理解是当3014准备好发送数据时,FLAGA为变为高,我
    发表于 05-08 06:04

    基于RV1126开发板实现人脸识别门禁系统解决方案

    本方案为类人脸门禁机的产品级解决方案,已为用户构建一个带调度框架的UI应用工程;准备好我司的easyeai-api链接调用;准备好UI的开发环境。具备低模块耦合度的特点。其目的在于方便用户快速拓展自定义的业务功能模块,以及快速更换UI皮肤。
    的头像 发表于 04-18 16:23 ?552次阅读
    基于RV1126开发板实现人脸识别门禁系统解决方案

    基于RV1126开发板实现简单的UI开发示例

    本方案为最简单的UI开发示例,已为用户初步构建一个基本的应用工程;准备好我司的easyeai-api链接调用;准备好UI的开发环境。其目的在于方便用户马上进行带有界面交互的产品开发,无须关心工程组建。
    的头像 发表于 04-18 16:07 ?602次阅读
    基于RV1126开发板实现简单的UI开发示例

    四月相约上海,慕尼黑电子展你准备好了吗? #上海慕尼黑电子展 #半导体

    半导体
    微碧半导体VBsemi
    发布于 :2025年03月17日 18:16:58

    光伏“抢装潮”来袭,你准备好了?吗?

    电价全面迈向市场化。两大重磅政策的发布引发了光伏行业“抢装潮”。光伏“抢装潮”来袭,CET准备好了!CET中电技术为0.4kV、10kV乃至35kV并网等级的光伏
    的头像 发表于 03-07 16:04 ?994次阅读
    光伏“抢装潮”来袭,你<b class='flag-5'>准备好</b>了?吗?

    DMD3010或4710在Internal patterns投影时DMD的工作状态是怎样的?

    ? 投影1bit 或8bit Internal pattern,有区别吗? 我是否可以理解为,在Illuminator打开的时候,DMD上的各个Pixel角度已经准备好, 相机拍照的曝光时间,只需要在Illuminator打开的某个时间段就能拍到下载的Internal pattern。
    发表于 02-21 08:20

    ADS1298中drdy应该是转换数据准备就绪的标志输出吧?

    );那么当drdy为低电平时,这个语句会跳过去,执行下面的语句。 以前用这条语句非常顺利。最近发现程序运行时经常会卡在这里(drdy不会变低),有时候重新上电再运行会解决这个问题,但有时候却不行 。 请问专家这是怎么回事,这应该是ADS1298的转换数据没有准备好吧。是不是芯片出了问题?
    发表于 02-13 07:03

    ADS1258 /DRDY为低MCU进行中断读取的时候,必须在多快的时间内把通道数据读走?

    最近在使用ADS1258芯片,给芯片配置了23.7KSPS/通道的数据速率,16个单端输入通道,其中/DRDY接在了MCU的中断输入IO上,当通道数据准备好,/DRDY为低的时候,将触发MCU
    发表于 01-08 06:12

    倍加福L2 CAN超声波传感器助力应对低温环境

    为应对下一轮的冷空气席卷而来,您准备好了吗?低温天气对我们的日常生活与工业生产带来挑战,气温预计将降至冰点以下。在极端寒冷条件下,传统标准传感器往往难以胜任,性能大打折扣,难以维持稳定持续的运作。
    的头像 发表于 01-03 15:49 ?553次阅读

    【开源项目】你准备好DIY一款功能强大的机器人了吗

    可以辅助检查微小的焊点细节。 焊锡膏涂覆 准备好PCB和模板后,下一步是涂覆焊锡膏。首先,使用一些旧的PCB板或夹具将PCB稳固地放置好,以保持其稳定。然后,将模板精确地对齐到PCB的顶部组件焊盘上
    发表于 11-08 10:53

    深度伪造人脸检测项目

    各位 AI 爱好者们,准备好通过各种 AI 技术来应对一个迫切需要被解决的全球问题了吗?MathWorks 诚邀您参加 2025 IEEE Signal Processing Cup 挑战赛:“野外深度伪造人脸检测”(DFWild-Cup)。
    的头像 发表于 10-17 10:46 ?1009次阅读
    深度伪造人脸检测项目

    用TAS5631做音频功放,需要怎么做才能使芯片准备好呢?

    我最近用TAS5631做音频功放,但上电之后芯片总是没准备好,即READY引脚总是为低电平,PVDD为28V,故障报告引脚都为高电平3.3V,即正常无故障。我想知道,需要怎么做才能使芯片准备好
    发表于 09-24 06:15

    如何做才能使TAS5631处于准备状态呢?

    我在用TAS5631做音频功放,但芯片总是显示没准备好(即READY引脚总是为低电平),其他的故障引脚都是高电平,即显示无故障,我的PVDD电压已经在25V以上,我想知道如何做才能使芯片处于准备状态呢
    发表于 09-10 07:25