0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新诞生的机器学习框架可以让你更加直观、轻松地拼完整个模型

电子工程师 ? 来源:OSC开源社区 ? 作者:OSC开源社区 ? 2022-08-08 16:17 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

喜欢乐高、熟悉乐高的朋友们应该都是清楚,如今有些乐高产品完全是面向大人的,它们的复杂程度远高于面向儿童的产品。以乐高千年隼号(Millennium Falcon)和帝国歼星舰(Imperial Star Destroyer)这两款产品为例,它们的积木颗粒分别为 7541 个和 4784 个,不少人花费了数月时间才最终拼完。据说拼过这两款积木的用户最后都 “病” 了,症状表现为看到积木就头疼、手不由自主发抖、容易犯呕。

不想被一个玩具难倒了?那么这个新诞生的机器学习框架可以让你更加直观、轻松地拼完整个模型。

a7af5a88-16c5-11ed-ba43-dac502259ad0.gif

Autodesk、斯坦福大学和麻省理工学院的研究人员探讨了将人类设计师创造的基于图像的、分步骤的装配手册翻译成机器可理解的指令的问题。研究人员将这个问题表述为一个连续的预测任务:在每个步骤中,该模型都会读取手册,定位要添加到当前形状中的部件,并推断出它们在三维空间的位置。这项任务带来的挑战是在手册图像和真实的三维物体之间建立「二维到三维」的对应关系,以及对未见过的三维物体进行三维姿态预测,因为在一个步骤中要添加的新部件可能是全新的小积木,也可能是由以前的步骤拼成的物体(例如一个人物模型,说明书通常是让用户先拼完人物的四肢和头部,然后再将四肢和头部与人物主体互相拼接在一起形成整体;而不是像 3D 打印,一步步从头到脚慢慢成型)。

为了解决这两个挑战,研究人员提出了一个新的基于学习的框架,即 MEPNet(Manual-to-Executable-Plan Network),它从一连串的手册图像中重构拼装步骤。其关键思想是整合神经的二维关键点检测模块和「二维到三维」投影算法,以实现高精度的预测和对未见过的组件的强概括性。通过测试发现,MEPNet 的表现优于现有方法。

研究人员表示,现有的将说明书步骤解析为机器可理解的指令的方法主要包括两种形式,一个是基于搜索的方法,该方法简单而准确,但计算成本高;另一个是基于学习的模型,速度快,但不善于处理未见过的 3D 形状,而 MEPNet 结合了上述两种方法。

除了可以用来拼乐高,在论文中研究人员还表示,他们的目标是创造帮助人们组装复杂物体的机器,他们的应用范围除了乐高的积木,还包括宜家的家具。因此利用这个框架,开发者有望开发出比普通家具说明更容易让用户理解的安装手册。

想测试 MEPNet 并且熟悉 Pytorch 的用户可以在 Github 上找到项目的代码 :https://github.com/Relento/lego_release

我十分怀疑,开发这个框架的研究员假借研究的名义偷偷玩乐高。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8510

    浏览量

    134855
  • 开源框架
    +关注

    关注

    0

    文章

    33

    浏览量

    9525
  • pytorch
    +关注

    关注

    2

    文章

    810

    浏览量

    14009

原文标题:乐高、宜家说明书太难懂?Autodesk开源框架帮你解决

文章出处:【微信号:OSC开源社区,微信公众号:OSC开源社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于机器 学习模型更易于使用。它创建的模型比竞争对手的框架
    发表于 07-31 11:38

    边缘计算中的机器学习:基于 Linux 系统的实时推理模型部署与工业集成!

    你好,旅行者!欢迎来到Medium的这一角落。在本文中,我们将把一个机器学习模型(神经网络)部署到边缘设备上,利用从ModbusTCP寄存器获取的实时数据来预测一台复古音频放大器的当前健康状况。
    的头像 发表于 06-11 17:22 ?395次阅读
    边缘计算中的<b class='flag-5'>机器</b><b class='flag-5'>学习</b>:基于 Linux 系统的实时推理<b class='flag-5'>模型</b>部署与工业集成!

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    视觉巡线,展示了如何从数据采集、模型训练到机器人部署的完整流程。 值得注意的是,深度学习模型的实时性对
    发表于 05-03 19:41

    【「# ROS 2智能机器人开发实践」阅读体验】机器人入门的引路书

    的限制和调控) 本书还有很多前沿技术项目的扩展 比如神经网络识别例程,机器学习图像识别的原理,yolo图像追踪的原理 机器学习训练三大点: 先准备一个基本的
    发表于 04-30 01:05

    首创开源架构,天玑AI开发套件端侧AI模型接入得心应手

    科正将AI能力体系化并赋能终端生态。 大会上,联发科定义了“智能体化用户体验”的五大特征:主动及时、知懂你、互动协作、学习进化和专属隐私信息守护。这五大特征需要跨越从芯片、模型、应用、终端乃至
    发表于 04-13 19:52

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习
    的头像 发表于 02-13 09:39 ?394次阅读

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    、医疗、服务等领域的应用前景更加广阔,也使得人类能够更轻松地借助机器完成复杂工作。我深刻认识到,大模型技术正在从根本上改变我们对机器人能力的
    发表于 12-29 23:04

    Triton编译器在机器学习中的应用

    多种深度学习框架,如TensorFlow、PyTorch、ONNX等,使得开发者能够轻松地将不同框架下训练的模型部署到GPU上。 2. Tr
    的头像 发表于 12-24 18:13 ?1054次阅读

    大语言模型开发框架是什么

    大语言模型开发框架是指用于训练、推理和部署大型语言模型的软件工具和库。下面,AI部落小编为您介绍大语言模型开发框架
    的头像 发表于 12-06 10:28 ?566次阅读

    Arm成功将Arm KleidiAI软件库集成到腾讯自研的Angel 机器学习框架

    Arm 与腾讯携手合作,成功将 Arm KleidiAI 软件库集成到腾讯自研的 Angel 机器学习框架。 ? 借助 KleidiAI 解锁卓越性能、能效和可移植性,腾讯混元大模型
    的头像 发表于 11-24 15:33 ?1342次阅读

    AI大模型与传统机器学习的区别

    AI大模型与传统机器学习在多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI大模型 :通常包含数十亿甚至数万亿的参
    的头像 发表于 10-23 15:01 ?2701次阅读

    RISC-V如何支持不同的AI和机器学习框架和库?

    RISC-V如何支持不同的AI和机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    【「大模型时代的基础架构」阅读体验】+ 第一、二章学习感受

    程分为下图中的四步: 此后引入机器学习开发框架TensorFlow,该框架下集成了多种“轮子”,但要避免“重复造轮子”。下一小节是分布式AI训练,从中知道了训练测略分为
    发表于 10-10 10:36

    【《时间序列与机器学习》阅读体验】+ 时间序列的信息提取

    本人有些机器学习的基础,理解起来一点也不轻松,加油。 作者首先说明了时间序列的信息提取是时间序列分析的一个重要环节,目标是从给定的时间序列数据中提取出有用的信息和特征,以支持后续的分析和预测任务,
    发表于 08-14 18:00

    【「时间序列与机器学习」阅读体验】+ 简单建议

    这本书以其系统性的框架和深入浅出的讲解,为读者绘制了一幅时间序列分析与机器学习融合应用的宏伟蓝图。作者不仅扎实地构建了时间序列分析的基础知识,更巧妙地展示了机器
    发表于 08-12 11:21