0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微流控芯片可控实现原位反应和静电驱动力大的特点相结合

微流控 ? 来源:微流控 ? 作者:微流控 ? 2022-08-05 09:48 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近年来,有机-无机卤化物钙钛矿纳米晶体(PNC)因其高光致发光量子产率、可调谐光学带隙和窄半峰宽等优异的光学特性而受到广泛关注。这些特性使PNC在太阳能电池、发光二极管、显示器、激光和光电探测器等领域具有广阔的应用前景。然而,有机-无机卤化物PNC的不稳定性和小规模生产仍是阻碍行业发展的难题。因此,迫切需要开发一种环境友好、方便快捷地制备具有极佳稳定性的高性能钙钛矿量子点的技术。

针对上述科学问题,南京工业大学化工学院、材料化学工程国家重点实验室陈苏教授与南京医科大学附属江宁医院李俊主任创新性地采用纤维纺丝化学(FSC)策略,即将微流控芯片可控实现原位反应和静电驱动力大的特点相结合,基于微流控静电纺丝技术成功实现了聚丙烯腈(PAN)/甲胺铅卤化物(MAPbX3,X= Cl、 Br、 I)钙钛矿量子点纳米纤维膜的制备。

c085b8c0-145b-11ed-ba43-dac502259ad0.png

图1 FSC策略制备PAN/MAPbBr3纳米纤维的机理及其在白光二极管和液晶显示的应用示意图。 具体来看,研究人员将纤维作为纳米反应器,前体PbBr2和MAX在纳米纤维上发生化学反应,形成MAPbX3 PNC。在微流控静电纺丝过程中,溶剂快速挥发,纳米纤维逐渐成型并固化,同时钙钛矿结晶析出生成PNC。纳米纤维为钙钛矿PNC的生长提供了限域空间,限制了其过度生长并防止其团聚,聚合物的包覆也提升了PNC的稳定性,避免了有机配体如油酸、油胺等的使用。同时,由微流控静电纺丝技术构建的超小尺度微反应器不仅规避了有机溶剂的使用和重金属废物的产生等潜在问题,而且可以连续大规模生产PNC。
此外,通过FSC策略制备的PAN/MAPbX3复合纳米纤维膜在464~612nm范围内具有可调谐的发射、较窄的半宽(23nm)和较高的光致发光量子效率(58%)。制备的PAN/MAPbBr3纳米纤维膜在室温条件下储存90天,其发光强度基本不变,其稳定性较之前的工作有明显提高。更重要的是,PAN/MAPbBr3纳米纤维膜具有优异的荧光性能、结构稳定性和耐水性,在白光二极管和液晶显示等光电领域具有广阔的应用前景。

c0be4a96-145b-11ed-ba43-dac502259ad0.png

图2 PAN/MAPbBr3纳米纤维膜的形貌和结构表征图。

c0eb6616-145b-11ed-ba43-dac502259ad0.png

图3 PAN/MAPbBr3纳米纤维膜在白光二极管和液晶显示领域的应用研究。 该研究成果于近日以“A stable and large-scale organic-inorganic halide perovskite nanocrystals/polymer nanofiber films prepared by a green and in-situ fiber spinning chemistry”为题发表在国际重要刊物Nanoscale上。南京工业大学陈苏教授与南京医科大学附属江宁医院李俊主任为共同通讯人,微流控静电纺丝机由南京捷纳思新材料有限公司提供。

c116ffba-145b-11ed-ba43-dac502259ad0.png

图4 微流控静电纺丝机(南京捷纳思新材料有限公司提供)。 该课题得到了国家自然科学基金重点项目、国家重点研发计划、江苏省高校优势学科建设工程、材料化学工程国家重点实验室等基金的资助和支持。

论文链接:

https://doi.org/10.1039/D2NR01691E

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控
    +关注

    关注

    16

    文章

    583

    浏览量

    20118
  • 量子点
    +关注

    关注

    7

    文章

    249

    浏览量

    26590

原文标题:基于微流控静电纺丝技术制备有机-无机卤化物钙钛矿量子点纳米纤维膜

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电压放大器驱动液滴芯片关键功能实现研究

    实验名称: 电压放大器在液滴芯片的功能研究中的应用 研究方向: 控生物芯片 测试目的:
    的头像 发表于 07-30 14:24 ?180次阅读
    电压放大器<b class='flag-5'>驱动</b>液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>关键功能<b class='flag-5'>实现</b>研究

    基于芯片的化学反应器性能优化方法

    了解什么是芯片以及其在化学反应器中的应用。芯片
    的头像 发表于 06-17 16:24 ?227次阅读

    芯片的封合工艺有哪些

    芯片封合工艺旨在将芯片的不同部分牢固结合,确保芯片内部流体通道的密封性和稳定性,以
    的头像 发表于 06-13 16:42 ?248次阅读

    飞秒激光技术在芯片中的应用

    和传统芯片不同,芯片更像是一个微米尺度的“生化反应平台”。详细来说,
    的头像 发表于 04-22 14:50 ?546次阅读
    飞秒激光技术在<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>中的应用

    高通量玻璃反应

    器具有极高的比表面积,从而实现高效的传热和传质能力,确保物料瞬间均匀混合。 主要特点 高效性 高通量玻璃反应器能够显著缩短
    的头像 发表于 02-21 14:13 ?391次阅读

    玻璃芯片特点

    玻璃芯片作为一种重要的控器件,具有许多独特的特点,使其在各种
    的头像 发表于 12-13 15:26 ?593次阅读

    掌握未来化工技术——反应器及其优势

    器的基本原理 反应器是一种基于流体技术的化学反应设备,通过微米级别的通道和精确控制的流体动力
    的头像 发表于 11-26 16:00 ?919次阅读

    常用的芯片类型

    芯片允许通过通道的连续流动来操纵液体。这种类型的芯片通常使用外部压力泵或集成机械泵等
    的头像 发表于 11-21 15:13 ?1197次阅读

    反应器在有机合成及催化中的应用

    反应器在有机合成及催化中的应用是一个跨学科的研究领域,结合了化学反应和化学工程的知识。它首次在化学反应和化学工程的交叉领域全面系统地总结了
    的头像 发表于 11-13 15:07 ?630次阅读

    S型芯片的优势

    、医学、物理学和化学:芯片特别适用于纳流体的精确操作,流体操作的精度可以达到纳升甚至飞秒级别。 高通量系统:通过流体设备的流体引导
    的头像 发表于 11-01 14:30 ?813次阅读

    控阵列芯片和普通芯片的区别

    于生物化学研究,而普通芯片则广泛应用于电子设备中。 设计原理与结构 控阵列芯片:设计重点在于微米级通道和腔室,用于精确操控流体,实现多种
    的头像 发表于 10-30 15:10 ?823次阅读

    反应器和混合器的区别

    高。反应器中的通道通过精密加工技术制造而成,特征尺寸一般在10到1000微米之间。这些微通道可以包含成百万上千万的微型通道,因此可以实现很高的产量。
    的头像 发表于 10-23 14:04 ?547次阅读

    反应器的特点

    雷诺数的特点,属于层流流动。这种流动状态有助于实现高效的混合和传质。 2. 高比表面积 反应器的通道尺寸小,导致其具有较高的比表面积。
    的头像 发表于 10-21 15:07 ?667次阅读

    COC/COP芯片开发与应用

    控技术是新一代医疗诊断颠覆性技术,芯片是指采用微细加工技术,将通道网络结构及其他功能
    的头像 发表于 09-24 14:52 ?763次阅读

    芯片3大制作技术

    ,同时保持反应体系的封闭性,减少污染,等等。流体作为控技术操控的对象,可以广泛涵盖血液,尿液,唾液等各种生物样本,因此在体外诊断(IVD)领域逐步发展成为面向即时诊断(POCT)
    的头像 发表于 08-29 14:44 ?988次阅读