在5G新无线电技术标准中,SUB-6GHz频率和毫米波频率都可以用来提高吞吐量。除了降低延迟和提高可靠性,3GPP 5G NR的发展对高数据吞吐量的需求也无疑是其中非常关键的一环。DPD在蜂窝通信系统中也是随处可见,使功率放大器(PA)能够有效地为天线提供最大功率。随着5G使基站中的天线数量增加,频谱变得更加拥挤,DPD开始成为一项关键技术,支持开发经济高效且符合规格要求的蜂窝系统。
作为一种很成熟的技术,DPD数字预失真通常被用于SUB-6GHz通信中,用来提高功率效率,在毫米波中则应用得不那么广泛。原因在于虽然毫米波频率的使用给数据吞吐量的提升带来了许多便利,但是其中的挑战也不那么容易解决。
毫米波应用DPD的挑战在哪?
预失真是PA线性化的“利器”,预失真线性化技术不仅不存在稳定性问题,还有更宽的信号频带,能够处理含多载波的信号。当然DPD本身会受制于时间、以及偏压的变化而变化,通过DPD使PA高度线性化,这也是应用在毫米波上的问题所在。在5G NR中,蜂窝移动被分配了24.25GHz到52.6GHz的毫米波频率,可用频谱范围的扩大带来了单个通道里更高的频率,也就是更高的吞吐量。但链路预算也更为吃紧了,因为高线性度的毫米波PA RF功率很低,而且效率不算高,路径损耗和单个PA的更低功率让链路预算极为吃紧。
如何解决吃紧的链路预算——有源相控阵天线
要解决吃紧的链路预算,必须将功率更准确地用在该用的位置上。有源相控阵天线可以解决此类挑战。毫米波有源相控阵天线与传统的天线相比,波束速度快、方向可控,拥有波束成型和波束转向能力;毫米波有源相控阵天线不含活动部件,会更可靠些,即便阵列中少数天线单元失效,总体性能也不会受到太大影响,可以说集成毫米波有源相控天线的终端是未来毫米波通信的重要发展方向之一。
有源相控阵天线中有许多天线元件,每个元件由低功率放大器驱动来实现,这些元件能增加阵列的总辐射功率。这种解决办法可能唯一的缺点在于,相控阵成本高,但随着MMIC技术的发展,成本也在一步步降低。
目前国外有源相控天线的发展比国内成熟,不管是在核心芯片还是工艺上。ADI是采用了SOI CMOS工艺大大提高了有源波束成型器件的功效并降低了成本。凭借RF集成电路的高度集成,将输入馈入单独的放大器中,放大器后的每个路径通过1:8功率分路器分成八个独立的通道。总辐射功率以及阵列增益的提升,链路预算得以缓解压力,以ADMV4828波束成型器为例,每一类AB PA可提供21 dBm峰值功率,比较其输出功率,PA为峰值功率留出9 dB的裕量,可以满足更多其他方面的需求。
解决链路预算挑战后,在SUB-6GHz和毫米波中使用DPD,根据ADI的测试数据,在毫米波阵列中DPD带来的节能功效并不明显,但是元件数量会大大减少。这意味着在更高的功率输出之外,大大降低阵列硬件成本并带来更多的空间余量。
毫米波有源相控阵技术趋势
纵观市面上的毫米波有源相控阵器件,集成化不断提高是最明显的趋势。其集成化主要集中在芯片和模块化上。通过使用先进封装技术和微系统集成工业,相控阵天线乃至后端射频、数字处理部分都以一个完整的SIP和SoC出现。
瑞萨电子的相控阵有源波束成形IC系列里,每个波束形成IC都包含了多个独立控制的有源通道,满足电子扫描阵列天线(ESA)的元素级波形塑造要求,采用紧凑型IC提供平面BGA或QFN封装,用以实现极小化相位阵列天线。值得一提的是瑞萨的动态阵列电源DAP、阵列传感器ArraySense和高速波控RapidBeam等专有技术可满足5G系统所需的所有波束形成功能,同时在任何硅技术中以高效率实现最高的线性射频输出功率。
向更高的频段拓展也是大势所趋,不管是通信领域的Ka波段、Q波段还是雷达领域的X波段、W波段乃至100GHz以上的频段,广阔的应用市场肯定会推动着技术向更高频段发展。毕竟自动驾驶和智能感知领域对这类设备的需求还是相当火热的。
作为一种很成熟的技术,DPD数字预失真通常被用于SUB-6GHz通信中,用来提高功率效率,在毫米波中则应用得不那么广泛。原因在于虽然毫米波频率的使用给数据吞吐量的提升带来了许多便利,但是其中的挑战也不那么容易解决。
毫米波应用DPD的挑战在哪?
预失真是PA线性化的“利器”,预失真线性化技术不仅不存在稳定性问题,还有更宽的信号频带,能够处理含多载波的信号。当然DPD本身会受制于时间、以及偏压的变化而变化,通过DPD使PA高度线性化,这也是应用在毫米波上的问题所在。在5G NR中,蜂窝移动被分配了24.25GHz到52.6GHz的毫米波频率,可用频谱范围的扩大带来了单个通道里更高的频率,也就是更高的吞吐量。但链路预算也更为吃紧了,因为高线性度的毫米波PA RF功率很低,而且效率不算高,路径损耗和单个PA的更低功率让链路预算极为吃紧。
如何解决吃紧的链路预算——有源相控阵天线
要解决吃紧的链路预算,必须将功率更准确地用在该用的位置上。有源相控阵天线可以解决此类挑战。毫米波有源相控阵天线与传统的天线相比,波束速度快、方向可控,拥有波束成型和波束转向能力;毫米波有源相控阵天线不含活动部件,会更可靠些,即便阵列中少数天线单元失效,总体性能也不会受到太大影响,可以说集成毫米波有源相控天线的终端是未来毫米波通信的重要发展方向之一。
有源相控阵天线中有许多天线元件,每个元件由低功率放大器驱动来实现,这些元件能增加阵列的总辐射功率。这种解决办法可能唯一的缺点在于,相控阵成本高,但随着MMIC技术的发展,成本也在一步步降低。
目前国外有源相控天线的发展比国内成熟,不管是在核心芯片还是工艺上。ADI是采用了SOI CMOS工艺大大提高了有源波束成型器件的功效并降低了成本。凭借RF集成电路的高度集成,将输入馈入单独的放大器中,放大器后的每个路径通过1:8功率分路器分成八个独立的通道。总辐射功率以及阵列增益的提升,链路预算得以缓解压力,以ADMV4828波束成型器为例,每一类AB PA可提供21 dBm峰值功率,比较其输出功率,PA为峰值功率留出9 dB的裕量,可以满足更多其他方面的需求。

(ADI)
解决链路预算挑战后,在SUB-6GHz和毫米波中使用DPD,根据ADI的测试数据,在毫米波阵列中DPD带来的节能功效并不明显,但是元件数量会大大减少。这意味着在更高的功率输出之外,大大降低阵列硬件成本并带来更多的空间余量。
毫米波有源相控阵技术趋势
纵观市面上的毫米波有源相控阵器件,集成化不断提高是最明显的趋势。其集成化主要集中在芯片和模块化上。通过使用先进封装技术和微系统集成工业,相控阵天线乃至后端射频、数字处理部分都以一个完整的SIP和SoC出现。
瑞萨电子的相控阵有源波束成形IC系列里,每个波束形成IC都包含了多个独立控制的有源通道,满足电子扫描阵列天线(ESA)的元素级波形塑造要求,采用紧凑型IC提供平面BGA或QFN封装,用以实现极小化相位阵列天线。值得一提的是瑞萨的动态阵列电源DAP、阵列传感器ArraySense和高速波控RapidBeam等专有技术可满足5G系统所需的所有波束形成功能,同时在任何硅技术中以高效率实现最高的线性射频输出功率。

(瑞萨)
向更高的频段拓展也是大势所趋,不管是通信领域的Ka波段、Q波段还是雷达领域的X波段、W波段乃至100GHz以上的频段,广阔的应用市场肯定会推动着技术向更高频段发展。毕竟自动驾驶和智能感知领域对这类设备的需求还是相当火热的。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
DPD
+关注
关注
3文章
42浏览量
15731 -
毫米波
+关注
关注
21文章
1980浏览量
66368 -
有源相控阵
+关注
关注
0文章
7浏览量
6658
发布评论请先 登录
相关推荐
热点推荐
科普|看懂毫米波雷达,这一篇就够啦!
今天这篇文章,我们来聊聊最近很火的一个概念——“毫米波”。█什么是毫米波?毫米波(mmWave),是一种频率在30GHz至300GHz之间的极高频(EHF)无线电磁波。我们国内目前正在

看懂毫米波雷达,这一篇就够啦!
今天这篇文章,我们来聊聊最近很火的一个概念——“毫米波”。█什么是毫米波?毫米波(mmWave),是一种频率在30GHz至300GHz之间的极高频(EHF)无线电磁波。我们国内目前正在

ADAS和防撞系统中的毫米波雷达方案
汽车雷达是极可靠的传感器技术,有不同类型的雷达用于汽车应用。毫米波(mmWave)雷达因其无论大气条件多么恶劣都能稳定地探测目标而广受欢迎。在各种传感器中,应用于汽车中的毫米波雷达对于智能汽车的实现

ALN4000-10-3530毫米波低噪声放大器WENTEQ
℃~+125℃
应用领域
雷达系统:用于毫米波雷达的前端信号放大,提升探测距离和精度。
卫星通信:作为接收机的前置放大器,提高信号接收质量。
5G/6G 通信:支持毫米波频段的基站和终
发表于 03-12 09:30
ALN3750-13-3335毫米波低噪声放大器WENTEQ
ALN3750-13-3335毫米波低噪声放大器WENTEQALN3750-13-3335毫米波低噪声放大器是毫米波通信系统中的核心组件,专为高频信号放大而设计,尤其适用于5G及未来6
发表于 02-11 09:32
毫米波雷达信号的传输特性
1. 引言 毫米波雷达作为一种高精度的探测技术,其信号的传输特性对于系统的性能至关重要。本文将探讨毫米波雷达信号的传输特性,包括其传播损耗、多径效应、雨衰等,并分析这些特性对雷达系统的影响。 2.
毫米波雷达的基频和调制技术 毫米波雷达在机器人导航中的应用
毫米波雷达的基频和调制技术 毫米波雷达的基频通常指的是其工作频段,一般在30GHz至300GHz之间。在这个频段内,毫米波雷达能够利用短波波长的电磁波进行检测,实现高精度、高分辨率的探
毫米波雷达与超声波雷达的区别
毫米波雷达与超声波雷达的区别 在现代科技领域,传感器技术扮演着至关重要的角色,尤其是在自动驾驶、工业自动化和机器人技术等领域。毫米波雷达和超声波雷达作为两种常见的传感器,它们各自有着独特的特点
毫米波雷达技术优势分析 毫米波雷达在安防监控中的应用
毫米波雷达技术优势分析 毫米波雷达作为一种先进的传感器技术,具备多项显著的技术优势: 高精度定位与感知 : 毫米波雷达通过发射和接收电磁波信号,能够准确测定目标的位置、速度和角度。 天
毫米波雷达与激光雷达比较 毫米波雷达在自动驾驶中的作用
毫米波雷达与激光雷达的比较 毫米波雷达与激光雷达是自动驾驶技术中常用的两种传感器,它们在多个方面存在显著差异: 毫米波雷达 激光雷达 工作原理 通过发射无线电波(毫米波)并根据接收回波
毫米波雷达工作原理 毫米波雷达应用领域
毫米波雷达工作原理 1. 毫米波雷达的基本结构 毫米波雷达系统通常由以下几个主要部分组成: 发射器 :产生毫米波信号。 天线 :发射和接收毫米波
什么是毫米波雷达?毫米波雷达模组选型
一、什么是毫米波雷达毫米波雷达是一种非接触型的传感器,其工作频率范围涵盖10毫米(30GHz)至1毫米(300GHz)的波段。这种技术具备精确的定位感知能力,可准确测定目标的位置、速度

评论