0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

YOLOX目标检测模型的推理部署

OpenCV学堂 ? 来源:OpenCV学堂 ? 作者:gloomyfish ? 2022-04-16 23:00 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

YOLOX目标检测模型

旷视科技开源了内部目标检测模型-YOLOX,性能与速度全面超越YOLOv5早期版本!

fd7acd32-bc50-11ec-aa7f-dac502259ad0.png

如此神奇原因在于模型结构的修改,下图说明了改了什么地方:

fd89a5b4-bc50-11ec-aa7f-dac502259ad0.png

把原来的耦合头部,通过1x1卷积解耦成两个并行的分支,经过一系列处理之后最终取得精度与速度双提升。实验对比结果如下:

fd9a396a-bc50-11ec-aa7f-dac502259ad0.png

论文与代码模型下载地址:
https://arxiv.org/pdf/2107.08430.pdfhttps://github.com/Megvii-BaseDetection/YOLOX

ONNX格式模型转与部署

下载YOLOX的ONNX格式模型(github上可以下载)
https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/ONNXRuntimehttps://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx

下载ONNX格式模型,打开之后如图:

fdab5c7c-bc50-11ec-aa7f-dac502259ad0.png

输入格式:1x3x640x640,默认BGR,无需归一化。输出格式:1x8400x85
官方说明ONNX格式支持OpenVINO、ONNXRUNTIME、TensorRT三种方式,而且都提供源码,官方提供的源码参考如下
https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo
本人就是参考上述的代码然后一通猛改,分别封装成三个类,完成了统一接口,公用了后处理部分的代码,基于本人笔记本的硬件资源与软件版本:
-GPU 3050Ti-CPU i7 11代-OS:Win10 64位-OpenVINO2021.4-ONNXRUNTIME:1.7-CPU-OpenCV4.5.4-Python3.6.5-YOLOX-TensorRT8.4.x
在三个推理平台上测试结果如下:

fdb887bc-bc50-11ec-aa7f-dac502259ad0.png

运行截图如下:onnxruntime推理

fdc4c9d2-bc50-11ec-aa7f-dac502259ad0.png

OpenVINO推理

fde1d216-bc50-11ec-aa7f-dac502259ad0.png

TensorRT推理 - FP32

fdf9d622-bc50-11ec-aa7f-dac502259ad0.png

转威FP16

fe1134ac-bc50-11ec-aa7f-dac502259ad0.png

TensorRT推理 - FP16

fe239098-bc50-11ec-aa7f-dac502259ad0.png

总结

之前我写过一篇文章比较了YOLOv5最新版本在OpenVINO、ONNXRUNTIME、OpenCV DNN上的速度比较,现在加上本篇比较了YOLOXTensorRT、OpenVINO、ONNXRUNTIME上推理部署速度比较,得到的结论就是:
CPU上速度最快的是OpenVINOGPU上速度最快的是TensorRT
能不改代码,同时支持CPU跟GPU推理是ONNXRUNTIMEOpenCV DNN毫无意外的速度最慢(CPU/GPU)

原文标题:YOLOX在OpenVINO、ONNXRUNTIME、TensorRT上面推理部署与速度比较

文章出处:【微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模型
    +关注

    关注

    1

    文章

    3533

    浏览量

    50588
  • 目标检测
    +关注

    关注

    0

    文章

    229

    浏览量

    16055
  • OpenCV
    +关注

    关注

    32

    文章

    643

    浏览量

    43099

原文标题:YOLOX在OpenVINO、ONNXRUNTIME、TensorRT上面推理部署与速度比较

文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于米尔瑞芯微RK3576开发板部署运行TinyMaix:超轻量级推理框架

    本文将介绍基于米尔电子MYD-LR3576开发平台部署超轻量级推理框架方案:TinyMaix 摘自优秀创作者-短笛君 TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML
    发表于 07-25 16:35

    如何在魔搭社区使用TensorRT-LLM加速优化Qwen3系列模型推理部署

    TensorRT-LLM 作为 NVIDIA 专为 LLM 推理部署加速优化的开源库,可帮助开发者快速利用最新 LLM 完成应用原型验证与产品部署
    的头像 发表于 07-04 14:38 ?763次阅读

    模型推理显存和计算量估计方法研究

    随着人工智能技术的飞速发展,深度学习大模型在各个领域得到了广泛应用。然而,大模型推理过程对显存和计算资源的需求较高,给实际应用带来了挑战。为了解决这一问题,本文将探讨大模型
    发表于 07-03 19:43

    基于LockAI视觉识别模块:C++目标检测

    快速部署高性能的目标检测应用。 特点: 高性能:优化了推理速度,在保持高精度的同时实现了快速响应。 灵活性:支持多种预训练模型,可以根据具体
    发表于 06-06 14:43

    labview调用yolo目标检测、分割、分类、obb

    labview调用yolo目标检测、分割、分类、obb、pose深度学习,支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    发表于 03-31 16:28

    【幸狐Omni3576边缘计算套件试用体验】RKNN 推理测试与图像识别

    本节介绍了 RKNN 推理测试的相关流程,包括 rknn_model_zoo 模型部署、编译及板端测试。 rknn_model_zoo rknn_model_zoo 是瑞芯微官方提供的 RKNPU 支持
    发表于 03-20 16:14

    添越智创基于 RK3588 开发板部署测试 DeepSeek 模型全攻略

    这也会带来新问题,随着模型参数增加,回复速度会明显下降,实际应用中需根据需求权衡。使用 Ollama 工具部署推理模型运行时主要依赖 CPU 运算。从运行监测数据能看到,模型回复时
    发表于 02-14 17:42

    摩尔线程宣布成功部署DeepSeek蒸馏模型推理服务

    近日,摩尔线程智能科技(北京)有限责任公司在其官方渠道发布了一则重要消息,宣布公司已经成功实现了对DeepSeek蒸馏模型推理服务的部署。这一技术突破,标志着摩尔线程在人工智能领域迈出了坚实的一步
    的头像 发表于 02-06 13:49 ?861次阅读

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    以及边缘计算能力的增强,越来越多的目标检测应用开始直接在靠近数据源的边缘设备上运行。这不仅减少了数据传输延迟,保护了用户隐私,同时也减轻了云端服务器的压力。然而,在边缘端部署高效且准确的目标
    发表于 12-19 14:33

    如何开启Stable Diffusion WebUI模型推理部署

    如何开启Stable Diffusion WebUI模型推理部署
    的头像 发表于 12-11 20:13 ?595次阅读
    如何开启Stable Diffusion WebUI<b class='flag-5'>模型</b><b class='flag-5'>推理</b><b class='flag-5'>部署</b>

    高效大模型推理综述

    模型由于其在各种任务中的出色表现而引起了广泛的关注。然而,大模型推理的大量计算和内存需求对其在资源受限场景的部署提出了挑战。业内一直在努力开发旨在提高大
    的头像 发表于 11-15 11:45 ?1562次阅读
    高效大<b class='flag-5'>模型</b>的<b class='flag-5'>推理</b>综述

    在树莓派上部署YOLOv5进行动物目标检测的完整流程

    卓越的性能。本文将详细介绍如何在性能更强的计算机上训练YOLOv5模型,并将训练好的模型部署到树莓派4B上,通过树莓派的摄像头进行实时动物目标检测
    的头像 发表于 11-11 10:38 ?3871次阅读
    在树莓派上<b class='flag-5'>部署</b>YOLOv5进行动物<b class='flag-5'>目标</b><b class='flag-5'>检测</b>的完整流程

    YOLOv6在LabVIEW中的推理部署(含源码)

    YOLOv6 是美团视觉智能部研发的一款目标检测框架,致力于工业应用。如何使用python进行该模型部署,官网已经介绍的很清楚了,但是对于如何在LabVIEW中实现该
    的头像 发表于 11-06 16:07 ?1004次阅读
    YOLOv6在LabVIEW中的<b class='flag-5'>推理</b><b class='flag-5'>部署</b>(含源码)

    手册上新 |迅为RK3568开发板NPU例程测试

    yolov5目标检测 6.13 yolov5-seg语义分割 6.14 yolov6目标检测 6.15 yolov7目标
    发表于 10-23 14:06

    手册上新 |迅为RK3568开发板NPU例程测试

    yolov5目标检测 6.13 yolov5-seg语义分割 6.14 yolov6目标检测 6.15 yolov7目标
    发表于 08-12 11:03