0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习模型的可解释性算法详解

C29F_xilinx_inc ? 来源:赛灵思 ? 作者:赛灵思 ? 2022-02-16 16:21 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文介绍目前常见的几种可以提高机器学习模型的可解释性的技术,包括它们的相对优点和缺点。我们将其分为下面几种:

1. Partial Dependence Plot (PDP);
2. Individual Conditional Expectation (ICE)
3. Permuted Feature Importance
4. Global Surrogate
5. Local Surrogate (LIME)
6. Shapley Value (SHAP)

六大可解释性技术

01. Partial Dependence Plot (PDP)

PDP是十几年之前发明的,它可以显示一个或两个特征对机器学习模型的预测结果的边际效应。它可以帮助研究人员确定当大量特征调整时,模型预测会发生什么样的变化。

pYYBAGIMpVqAaaFhAABRlVr4NOQ013.jpg

上面图中,轴表示特征的值,轴表示预测值。阴影区域中的实线显示了平均预测如何随着值的变化而变化。PDP能很直观地显示平均边际效应,因此可能会隐藏异质效应。

例如,一个特征可能与一半数据的预测正相关,与另一半数据负相关。那么PDP图将只是一条水平线。

02. Individual Conditional Expectation (ICE)

ICE和PDP非常相似,但和PDP不同之处在于,PDP绘制的是平均情况,但是ICE会显示每个实例的情况。ICE可以帮助我们解释一个特定的特征改变时,模型的预测会怎么变化。

poYBAGIMpVyAE28WAABtjMnY2h8048.jpg

如上图所示,与PDP不同,ICE曲线可以揭示异质关系。但其最大的问题在于:它不能像PDP那样容易看到平均效果,所以可以考虑将二者结合起来一起使用。

03. Permuted Feature Importance

Permuted Feature Importance的特征重要性是通过特征值打乱后模型预测误差的变化得到的。换句话说,Permuted Feature Importance有助于定义模型中的特征对最终预测做出贡献的大小。

pYYBAGIMpV2AaQNOAABOmoyoiXQ106.jpg

如上图所示,特征f2在特征的最上面,对模型的误差影响是最大的,f1在shuffle之后对模型却几乎没什么影响,生息的特征则对于模型是负面的贡献。

04. Global Surrogate

Global Surrogate方法采用不同的方法。它通过训练一个可解释的模型来近似黑盒模型的预测。

首先,我们使用经过训练的黑盒模型对数据集进行预测;
然后我们在该数据集和预测上训练可解释的模型。

训练好的可解释模型可以近似原始模型,我们需要做的就是解释该模型。

注:代理模型可以是任何可解释的模型:线性模型、决策树、人类定义的规则等。

poYBAGIMpV6AG-_EAABN555B_iQ111.jpg

使用可解释的模型来近似黑盒模型会引入额外的误差,但额外的误差可以通过R平方来衡量。

由于代理模型仅根据黑盒模型的预测而不是真实结果进行训练,因此全局代理模型只能解释黑盒模型,而不能解释数据。

05. Local Surrogate (LIME)

LIME(Local Interpretable Model-agnostic Explanations)和global surrogate是不同的,因为它不尝试解释整个模型。相反,它训练可解释的模型来近似单个预测。LIME试图了解当我们扰乱数据样本时预测是如何变化的。

pYYBAGIMpV-AL2OJAACsc1fOz3g389.jpg

上面左边的图像被分成可解释的部分。然后,LIME 通过“关闭”一些可解释的组件(在这种情况下,使它们变灰)来生成扰动实例的数据集。对于每个扰动实例,可以使用经过训练的模型来获取图像中存在树蛙的概率,然后在该数据集上学习局部加权线性模型。最后,使用具有最高正向权重的成分来作为解释。

06. Shapley Value (SHAP)

Shapley Value的概念来自博弈论。我们可以通过假设实例的每个特征值是游戏中的“玩家”来解释预测。每个玩家的贡献是通过在其余玩家的所有子集中添加和删除玩家来衡量的。一名球员的Shapley Value是其所有贡献的加权总和。Shapley 值是可加的,局部准确的。如果将所有特征的Shapley值加起来,再加上基值,即预测平均值,您将得到准确的预测值。这是许多其他方法所没有的功能。

poYBAGIMpWCAZz9gAABYg_zptR8122.jpg

该图显示了每个特征的Shapley值,表示将模型结果从基础值推到最终预测的贡献。红色表示正面贡献,蓝色表示负面贡献。

小结
机器学习模型的可解释性是机器学习中一个非常活跃而且重要的研究领域。本文中我们介绍了6种常用的用于理解机器学习模型的算法。大家可以依据自己的实践场景进行使用。

参考文献
https://www.twosigma.com/articles/interpretability-methods-in-machine-le...

【免责声明】本文转载自:Datawhale,转载此文目的在于传播相关技术知识,版权归原作者所有,如涉及侵权,请联系小编删除(联系邮箱:service@eetrend.com )。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • PDP
    PDP
    +关注

    关注

    0

    文章

    53

    浏览量

    36644
  • 机器学习
    +关注

    关注

    66

    文章

    8510

    浏览量

    134901
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科学院西安光机所在计算成像可解释性深度学习重建方法取得进展

    图1 MDFP-Net网络结构 近日,中国科学院西安光机所空间光学技术研究室在计算成像可解释性深度学习重建方法研究取得创新进展。相关研究成果发表于计算机视觉与图形学领域国际著名期刊
    的头像 发表于 06-09 09:27 ?271次阅读
    中国科学院西安光机所在计算成像<b class='flag-5'>可解释性</b>深度<b class='flag-5'>学习</b>重建方法取得进展

    算法进化论:从参数剪枝到意识解码的 AI 革命

    电子发烧友网报道(文 / 李弯弯)在人工智能领域,算法创新无疑是推动技术持续前行的核心动力源泉。近些年来,随着深度学习、强化学习等前沿技术相继取得重大突破,AI 算法在效率提升、
    的头像 发表于 04-19 00:38 ?1813次阅读

    模型领域常用名词解释(近100个)

    本文总结了大模型领域常用的近100个名词解释,并按照模型架构与基础概念,训练方法与技术,模型优化与压缩,推理与应用,计算与性能优化,数据与标签,模型
    的头像 发表于 02-19 11:49 ?831次阅读
    大<b class='flag-5'>模型</b>领域常用名词<b class='flag-5'>解释</b>(近100个)

    AI大模型在汽车应用中的推理、降本与可解释性研究

    佐思汽研发布《2024-2025年AI大模型及其在汽车领域的应用研究报告》。 推理能力成为大模型性能提升的驱动引擎 2024下半年以来,国内外大模型公司纷纷推出推理模型,通过以CoT为
    的头像 发表于 02-18 15:02 ?1340次阅读
    AI大<b class='flag-5'>模型</b>在汽车应用中的推理、降本与<b class='flag-5'>可解释性</b>研究

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器
    的头像 发表于 02-13 09:39 ?396次阅读

    小白学解释性AI:从机器学习到大模型

    科学AI需要可解释性人工智能的崛起,尤其是深度学习的发展,在众多领域带来了令人瞩目的进步。然而,伴随这些进步而来的是一个关键问题——“黑箱”问题。许多人工智能模型,特别是复杂的模型,如
    的头像 发表于 02-10 12:12 ?671次阅读
    小白学<b class='flag-5'>解释性</b>AI:从<b class='flag-5'>机器</b><b class='flag-5'>学习</b>到大<b class='flag-5'>模型</b>

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    设计专门的编码器处理视觉、触觉、位置等不同类型的传感器数据,再用cross-attention机制将它们对齐到同一语义空间。这种设计不仅提高了模型的感知能力,还增强了推理过程的可解释性。在实验中,RT-1
    发表于 12-24 15:03

    NPU与机器学习算法的关系

    紧密。 NPU的起源与特点 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)项目中提出,旨在为TensorFlow框架提供专用的硬件加速。NPU的设计目标是提高机器学习算法的运行效率,特别是在处理
    的头像 发表于 11-15 09:19 ?1331次阅读

    一种基于因果路径的层次图卷积注意力网络

    机电系统中数据驱动故障检测模型的性能和可解释性。引入了一种混合因果发现算法来发现监测变量之间的继承因果关系。顺序连接因果变量的因果路径用作接收场,使用多尺度卷积来提取特征。基于分层注意力机制来聚合
    的头像 发表于 11-12 09:52 ?1122次阅读
    一种基于因果路径的层次图卷积注意力网络

    深度学习模型的鲁棒优化

    深度学习模型的鲁棒优化是一个复杂但至关重要的任务,它涉及多个方面的技术和策略。以下是一些关键的优化方法: 一、数据预处理与增强 数据清洗 :去除数据中的噪声和异常值,这是提高模型鲁棒
    的头像 发表于 11-11 10:25 ?1309次阅读

    鲁棒机器学习中的重要

    机器学习领域,模型的鲁棒是指模型在面对输入数据的扰动、异常值、噪声或对抗性攻击时,仍能保持性能的能力。随着人工智能技术的快速发展,
    的头像 发表于 11-11 10:19 ?1351次阅读

    常见AI大模型的比较与选择指南

    在选择AI大模型时,明确具体需求、了解模型的训练数据、计算资源要求和成本,并考虑模型可解释性和社区支持情况等因素至关重要。以下是对常见AI大模型
    的头像 发表于 10-23 15:36 ?2786次阅读

    AI大模型与深度学习的关系

    人类的学习过程,实现对复杂数据的学习和识别。AI大模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度学习
    的头像 发表于 10-23 15:25 ?2983次阅读

    AI大模型与传统机器学习的区别

    AI大模型与传统机器学习在多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI大模型 :通常包含数十亿甚至数万亿的参
    的头像 发表于 10-23 15:01 ?2710次阅读

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    。 4. 物理与AI的融合 在阅读过程中,我对于物理与AI的融合有了更加深入的认识。AI for Science不仅依赖于数据,还需要结合物理定律和原理来确保模型的准确可解释性。这种融合不仅提高了
    发表于 10-14 09:16