0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

你们知道深度学习框架制造原理吗

新机器视觉 ? 来源:易学教程 ? 作者: 帅比萌擦擦 ? 2021-06-19 09:37 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

新一代人工智能技术的发展,离不的两大基础是:芯片、深度学习框架,随着中国科研创新能力的提升,这两方面技术取得了大量的突破。

当然,这也是一种技术封锁的倒逼,去年出现的华为芯片供应链被全面封锁,和工科神器MATLAB被禁事件,这两件事情加起来,迫使我国要从基础架构平台到应用系统等,全方位建设自主知识的优秀产品。

01

发 展

作为人工智能的核心技术,深度学习来说,无论是学术领域、还是工业领域,均发挥着十分重要的作用。

过去十年,深度学习领域涌现了大量算法和应用。在这些深度学习算法和应用涌现的背后,是各种各样的深度学习工具和框架。TensorFlow 和 PyTorch 等深度学习框架是机器学习革命的脚手架,它们的广发使用,使得许多从业者能够使用适合领域特定编程语言,和丰富构建模块,以便于更容易地组装模型。

回顾深度学习框架的演变,深度学习框架和深度学习算法之间的紧密耦合关,让我们知道了这种,互依赖良性循环,推动了深度学习框架和工具的快速发展。

02

趋 势

我们正在处于一场人工智能革命的黎明,人工智能领域的新研究和应用框架,正在以前所未有的速度涌现。

八、九年前的AlexNet 网络,只包含了大概6000 万个参数,而 GPT-3 网络竟然包含了 1750 亿参数,网络规模在短短不到十年的时间,迅猛增加了 3000 倍。但我们要知道,人类的大脑包含了100万亿个突触,也就相当于100万亿参数。所以,神经网络要达到人类的智能水平还有很大的差距。

这种难以接受的网络规模,对现有的模型训练和推理的硬件、软件计算效率都提出了很大的挑战。未来的深度学习框架很可能是算法、高性能计算、硬件加速器和分布式系统的跨学科成果。

03

挑 战

然而,对于深度学习相关的初学者,还是对于已经从事相关工作的算法工程师来说,深度学习理论太难学,开发过程太复杂,又将许多人拒之于深度学习的门外。

而大厂等一线企业在这方面的需求也是迫在眉睫,阿里云也正式开深,是业界首个面向NLP场景的深度迁移学习框架。人才渴求之大,人才缺口异常严峻。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    460

    文章

    52616

    浏览量

    442663
  • 人工智能
    +关注

    关注

    1809

    文章

    49151

    浏览量

    250621
  • 深度学习
    +关注

    关注

    73

    文章

    5564

    浏览量

    122938

原文标题:详解深度学习框架制造原理

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    百度飞桨框架3.0正式版发布

    大模型训练成本高?推理效率低?硬件适配难? 4月1日,百度发布 飞桨框架3.0正式版 !五大特性专为大模型设计。 作为大模型时代的Infra“基础设施”,深度学习框架的重要性愈发凸显,
    的头像 发表于 04-02 19:03 ?771次阅读
    百度飞桨<b class='flag-5'>框架</b>3.0正式版发布

    嵌入式AI技术之深度学习:数据样本预处理过程中使用合适的特征变换对深度学习的意义

    ? 作者:苏勇Andrew 使用神经网络实现机器学习,网络的每个层都将对输入的数据做一次抽象,多层神经网络构成深度学习框架,可以深度理解数
    的头像 发表于 04-02 18:21 ?933次阅读

    如何排除深度学习工作台上量化OpenVINO?的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO?特定层
    发表于 03-06 07:31

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 ?567次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 ?914次阅读

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 ?704次阅读

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 ?2019次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 ?704次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 ?1479次阅读

    激光雷达技术的基于深度学习的进步

    信息。这使得激光雷达在自动驾驶、无人机、机器人等领域具有广泛的应用前景。 二、深度学习技术的发展 深度学习是机器学习的一个分支,它通过模拟人
    的头像 发表于 10-27 10:57 ?1111次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPGA的AlexNet卷积运算加速 项目名称
    的头像 发表于 10-25 09:22 ?1303次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 ?2974次阅读

    深度学习GPU加速效果如何

    图形处理器(GPU)凭借其强大的并行计算能力,成为加速深度学习任务的理想选择。
    的头像 发表于 10-17 10:07 ?648次阅读

    RISC-V如何支持不同的AI和机器学习框架和库?

    RISC-V如何支持不同的AI和机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    FPGA做深度学习能走多远?

    。FPGA的优势就是可编程可配置,逻辑资源多,功耗低,而且赛灵思等都在极力推广。不知道用FPGA做深度学习未来会怎样发展,能走多远,你怎么看。 A:FPGA 在深度
    发表于 09-27 20:53