0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

你们知道深度学习有哪四个学习阶段吗

新机器视觉 ? 来源:Coggle数据科学 ? 作者:Coggle数据科学 ? 2021-06-10 15:27 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

机器学习领域是巨大的,为了学习不迷路,可以从以下列表帮助学习。它概述深度学习的一些学习细节。

阶段1:入门级入门级能够掌握以下技能:

能够处理小型数据集

理解经典机器学习技术的关键概念

理解经典网络DNN、CNN和RNN

数据处理

在入门级使用的数据集很小,可以放入主内存中。只需几行代码即可应用此类操作。在此阶段数据包括Audio、Image、Time-series和Text等类型。

经典机器学习

在深入研究深度学习之前,学习基本机器学习技术是一个不错的选择,其包括回归、聚类、SVM和树模型。

网络

掌握常见的网络层,以及相应的神经网络;GAN、AE、VAE、DNN、CNN、RNN 等等。在入门阶段,可以优先掌握DNN、CNN和RNN。

理论

没有神经网络就没有深度学习,没有(数学)理论就没有神经网络。可以通过了解数学符号来开始学习,可以从矩阵、线性代数和概率论开始你的学习。

阶段2:进阶水平进阶和入门级之间没有真正的分界,进阶水平能够处理更大的数据集,能够使用高级网络处理自定义项模型:

处理更大的数据集

能够自定义模型完成任务

网络模型精度变得更好

数据处理

能够处理几GB的数据集,需要自定义数据扩增方法和数据处理函数。

自己完成任务

能够根据具体任务完成代码的开发,而不是参考MNIST的教程完成编码。

自定义网络

处理自定义项目时,如何处理数据数据?如何定义自己的网络层?

模型训练

掌握迁移学习的思路,学会使用预训练权重完成新任务。并掌握冻结部分网络层的方法。

深度学习理论

掌握深度学习模型的正向传播和反向传播,特别是链式求导法则。掌握激活函数和目标函数的作用,能够选择合适的激活函数和目标函数。

阶段3:熟练水平与进阶相比你需要掌握更加的数据集处理方法,并掌握加速模型训练的方法:

大规模数据的处理和存储

网络模型的调参

无监督学习和强化学习

数据处理

需要掌握几百GB数据集的处理,学会Linux的操作。此阶段可能接触到多模态任务。

无监督项目

开始尝试无监督网络模型的搭建,如自编码器和GAN模型,能够掌握模型原理。

模型训练

掌握模型调参的方法和常见的日志和可视化工具,如TensorBoard的使用。掌握学习率的调节方法,如余弦退火。掌握多机和混合精度训练。

阶段4:专家级掌握前沿的学术模型的发展,知道自己的兴趣是什么,并能提出新的模型:

学会使用JAX或DALI处理数据

熟悉图神经网络和Transformer模型

本文在原文基础上进行了精简,原文链接:https://towardsdatascience.com/a-guide-to-the-field-of-deep-learning-9bb9b21dae2

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104099
  • GaN
    GaN
    +关注

    关注

    19

    文章

    2219

    浏览量

    77132
  • 机器学习
    +关注

    关注

    66

    文章

    8510

    浏览量

    134901
  • rnn
    rnn
    +关注

    关注

    0

    文章

    89

    浏览量

    7138

原文标题:深度学习的四个学习阶段!

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    军事应用中深度学习的挑战与机遇

    ,并广泛介绍了深度学习在两主要军事应用领域的应用:情报行动和自主平台。最后,讨论了相关的威胁、机遇、技术和实际困难。主要发现是,人工智能技术并非无所不能,需要谨慎应用,同时考虑到其局限性、网络安全威胁以及
    的头像 发表于 02-14 11:15 ?569次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的定义与发展
    的头像 发表于 02-12 15:15 ?916次阅读

    AI自动化生产:深度学习在质量控制中的应用

    生产效率、保证产品质量方面展现出非凡的能力。阿丘科技「AI干货补给站」推出《AI自动化生产:深度学习在质量控制中的应用》文章,探讨深度学习在自动化生产中的
    的头像 发表于 01-17 16:35 ?749次阅读
    AI自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b>在质量控制中的应用

    请问AD9852四个输出口什么差别?

    AD9852四个输出口什么差别?是不是IOUT1是余弦输出,IOUT2是DAC控制输出,需要设置DAC控制寄存器?
    发表于 01-16 06:59

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 ?2033次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 ?708次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是深度学习
    的头像 发表于 10-27 11:13 ?1492次阅读

    激光雷达技术的基于深度学习的进步

    信息。这使得激光雷达在自动驾驶、无人机、机器人等领域具有广泛的应用前景。 二、深度学习技术的发展 深度学习是机器学习的一
    的头像 发表于 10-27 10:57 ?1113次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPG
    的头像 发表于 10-25 09:22 ?1308次阅读

    人工智能、机器学习深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI很多技术,但其中一很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 ?3048次阅读
    人工智能、机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么区别

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 ?2983次阅读

    深度学习GPU加速效果如何

    图形处理器(GPU)凭借其强大的并行计算能力,成为加速深度学习任务的理想选择。
    的头像 发表于 10-17 10:07 ?652次阅读

    总线传输周期包括四个阶段

    总线传输周期是计算机系统中数据传输的基本单位,它涉及到多个阶段,以确保数据能够正确、高效地在处理器、内存和其他外设之间传输。一典型的总线传输周期通常包括以下四个阶段: 请求
    的头像 发表于 10-12 09:05 ?2708次阅读

    FPGA做深度学习能走多远?

    ,共同进步。 欢迎加入FPGA技术微信交流群14群! 交流问题(一) Q:FPGA做深度学习能走多远?现在用FPGA做深度学习加速成为一
    发表于 09-27 20:53

    构成电路的必要元件四个

    构成电路的必要元件主要有四个,它们分别是: 电源 :电源是电路中提供电能的设备。它的作用是将其他形式的能量(如化学能、机械能等)转换为电能,从而为电路中的其他元件提供所需的电压和电流。没有电源,电路
    的头像 发表于 08-25 09:45 ?1997次阅读