0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员开发“液态”神经网络 可适应快速变化的训练环境

工程师邓生 ? 来源:cnBeta.COM ? 作者:cnBeta.COM ? 2021-01-29 10:46 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

想要适应自动驾驶、控制机器人、医疗诊断等场景,就必须让神经网络适应快速变化的各种状况。好消息是,麻省理工(MIT)计算机科学与人工智能实验室(CSAIL)的 Ramin Hasani 团队,已经设计出了一种具有重大改进的“液态”神经网络。其特点是能够在投入训练阶段之后,极大地扩展 AI 技术的灵活性。

通常情况下,研究人员会在训练阶段向神经网络算法提供大量相关的目标数据,来磨炼其推理能力。

期间通过对正确的响应加以奖励,以优化其性能。然而传统的训练方案,明显还是过于“刻板”了。

有鉴于此,Ramin Hasani 与团队成员合作开发了一套新方法,让神经网络可以像“液体”一样,随着时间的流逝而更好地适应“正确”的新信息。

举个例子,如果无人驾驶汽车上的感知神经网络能够分辨晴朗的天空和大雪等环境,就可以更好地顺应情况的变化、并维持较高的性能。

这项新研究的主要特点,是侧重于时间序列的适应性。比之建立于训练数据的多快照或时间上的静态时刻,可流动的液态神经网络可以将时间序列或图像序列也考虑进来,而不是孤立的各个片段。

得益于这种系统设计方法,与传统神经网络相比,MIT 的液态系统实际上更便于开展观察研究。

前一种 AI 通常被称作‘黑盒’,尽管算法开发者明确知晓输入信息的判定准则,但通常无法确定其中到底发生了什么。

而液态神经网络在这部分提升了透明度、对复杂计算节点的依赖性也更少,因此还具有相当不错的成本优势。

最终结果表明,在预测已知数据集的未来值方面,液态神经网络的准确性要显著优于其它替代方案。

下一步,Hasani 将与团队成员继续改进液态神经网络的性能表现,并努力将之推向实际应用。

责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104500
  • 数据
    +关注

    关注

    8

    文章

    7264

    浏览量

    92417
  • 自动驾驶
    +关注

    关注

    790

    文章

    14398

    浏览量

    171483
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
    发表于 06-25 13:06

    神经网络RAS在异步电机转速估计中的仿真研究

    众多方法中,由于其结构简单,稳定性好广泛受到人们的重视,且已被用于产品开发。但是MRAS仍存在在低速区速度估计精度下降和对电动机参数变化非常敏感的问题。本文利用神经网络的特点,使估计更为简单、
    发表于 06-16 21:54

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 ?829次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过
    的头像 发表于 02-12 15:36 ?1060次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算
    的头像 发表于 02-12 15:18 ?900次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 ?995次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 ?1036次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能的机器学习模型。近年来,由于
    的头像 发表于 01-09 10:24 ?1422次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    基于光学衍射神经网络的轨道角动量复用全息技术的设计与实验研究

    随着神经网络的发展,光学神经网络(ONN)的研究受到广泛关注。研究人员从衍射光学、散射光、光干涉以及光学傅里叶变换等基础理论出发,利用各种光学设备及材料成功实现了
    的头像 发表于 12-07 17:39 ?2888次阅读
    基于光学衍射<b class='flag-5'>神经网络</b>的轨道角动量复用全息技术的设计与实验<b class='flag-5'>研究</b>

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 ?781次阅读

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 ?2047次阅读

    LSTM神经网络训练数据准备方法

    LSTM(Long Short-Term Memory,长短期记忆)神经网络训练数据准备方法是一个关键步骤,它直接影响到模型的性能和效果。以下是一些关于LSTM神经网络训练数据准备的
    的头像 发表于 11-13 10:08 ?2298次阅读

    Moku人工神经网络101

    Moku3.3版更新在Moku:Pro平台新增了全新的仪器功能【神经网络】,使用户能够在Moku设备上部署实时机器学习算法,进行快速、灵活的信号分析、去噪、传感器调节校准、闭环反馈等应用。如果您
    的头像 发表于 11-01 08:06 ?732次阅读
    Moku人工<b class='flag-5'>神经网络</b>101

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提
    发表于 10-24 13:56

    【飞凌嵌入式OK3576-C开发板体验】RKNN神经网络算法开发环境搭建

    验过程,以及实验过程遇到的些许问题,与该文档有所出入。没有使用大量的篇幅重新描述实现过程,如果有同志想研究RKNN算法还是要结合RKNNSDK快速上手指南的。 二、准备开发环境 新建一
    发表于 10-10 09:28