0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于PyTorch的深度学习入门教程之PyTorch简单知识

ss ? 来源:雁回晴空 ? 作者:雁回晴空 ? 2021-02-16 15:20 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。

Part1:PyTorch简单知识

Part2:PyTorch的自动梯度计算

Part3:使用PyTorch构建一个神经网络

Part4:训练一个神经网络分类器

Part5:数据并行化

本文是关于Part1的内容。

Part1:PyTorch简单知识

PyTorch是一个基于Python的科学计算框架,用于进行深度学习相关研究。对于Python语言的入门,可以参考之前的两篇介绍Python&Numpy的博客。分别是Python& Numpy 教程(上) 和Python & Numpy 教程(下)。这里我们就直接介绍PyTorch中的基本操作。

1 Tensors

Tensors与numpy中的ndarray类似,但是Tensors支持GPU运算。首先来做一些简单的例子。

导入基本的package:


		

构建一个5*3的未初始化的矩阵:

x = torch.Tensor(5, 3)
print(x)

构建一个随机初始化矩阵:

x = torch.rand(5, 3)
print(x)

获取矩阵的size:

print(x.size())

注意,torch.Size实际上是一个tuple,所以它支持相同的运算。

2 运算(Operations)

运算可以使用多种语法表示,我们以加法为例子来说明。

加法:语法1

y = torch.rand(5, 3)
print(x + y)

加法:语法2

print(torch.add(x, y))

加法:给定输出的tensor

result = torch.Tensor(5, 3)
torch.add(x, y, out=result)
print(result)

加法:原地进行(in-place)的加法

# adds x to y
y.add_(x)
print(y)

注意,任何原地改变tensor的运算后边会后缀一个“_”,例如:x.copy_(y),x.t_(),会改变x的值。

你可以使用标准的numpy方式的索引

print(x[:, 1])

3 NumpyBridge

将torch的Tensor转换为numpy的array,反之亦然。

torch的Tensor和numpy的array分享底层的内存地址,所以改变其中一个就会改变另一个。

将torch Tensor转换为numpy array

a = torch.ones(5)
print(a)
b = a.numpy()
print(b)

观察numpy array的值怎样改变。

a.add_(1)
print(a)
print(b)

将numpy array 转换为torch Tensor

看一下改变numpy array的值是怎样同时改变torch Tensor的。

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

CPU上的所有Tensors(除了CharTensor)支持到Numpy的双向转换。

4 CUDA Tensors

通过使用 .cuda 函数,Tensors可以被移动到GPU。

# let us run this cell only if CUDA is available
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    x + y

责任编辑:xj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7261

    浏览量

    92236
  • pytorch
    +关注

    关注

    2

    文章

    810

    浏览量

    14010
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Arm方案 基于Arm架构的边缘侧设备(树莓派或 NVIDIA Jetson Nano)上部署PyTorch模型

    本文将为你展示如何在树莓派或 NVIDIA Jetson Nano 等基于 Arm 架构的边缘侧设备上部署 PyTorch 模型。
    的头像 发表于 07-28 11:50 ?1590次阅读

    使用OpenVINO? 2021.4将经过训练的自定义PyTorch模型加载为IR格式时遇到错误怎么解决?

    使用 OpenVINO? 2021.4 将经过训练的自定义 PyTorch 模型加载为 IR 格式时遇到错误: RuntimeError: [ GENERAL_ERROR ] Failed
    发表于 03-05 08:40

    操作指南:pytorch云服务器怎么设置?

    设置PyTorch云服务器需选择云平台,创建合适的GPU实例,安装操作系统、Python及Anaconda,创建虚拟环境,根据CUDA版本安装PyTorch,配置环境变量,最后验证安装。过程中需考虑
    的头像 发表于 02-08 10:33 ?386次阅读

    【「具身智能机器人系统」阅读体验】+两本互为支持的书

    如何使用PyTorch进行数字图像处理,它借助摄像头来获取视频的图像信息,然后通过已有的图像识别框架模型经深度学习和优化以达到更精准的识别结果,从而为进一步的执行处理提供数据支持和依据。而《具身智能机器人系统
    发表于 01-01 15:50

    利用Arm Kleidi技术实现PyTorch优化

    PyTorch 是一个广泛应用的开源机器学习 (ML) 库。近年来,Arm 与合作伙伴通力协作,持续改进 PyTorch 的推理性能。本文将详细介绍如何利用 Arm Kleidi 技术提升 Arm
    的头像 发表于 12-23 09:19 ?1125次阅读
    利用Arm Kleidi技术实现<b class='flag-5'>PyTorch</b>优化

    Arm KleidiAI助力提升PyTorch上LLM推理性能

    热门的深度学习框架尤为突出,许多企业均会选择其作为开发 AI 应用的库。通过部署 Arm Kleidi 技术,Arm 正在努力优化 PyTorch,以加速在基于 Arm 架构的处理器上运行 LLM 的性能。Arm 通过将 Kle
    的头像 发表于 12-03 17:05 ?1554次阅读
    Arm KleidiAI助力提升<b class='flag-5'>PyTorch</b>上LLM推理性能

    PyTorch 2.5.1: Bugs修复版发布

    ? 一,前言 在深度学习框架的不断迭代中,PyTorch 社区始终致力于提供更稳定、更高效的工具。最近,PyTorch 2.5.1 版本正式发布,这个版本主要针对 2.5.0 中发现的
    的头像 发表于 12-03 16:11 ?1676次阅读
    <b class='flag-5'>PyTorch</b> 2.5.1: Bugs修复版发布

    PyTorch GPU 加速训练模型方法

    深度学习领域,GPU加速训练模型已经成为提高训练效率和缩短训练时间的重要手段。PyTorch作为一个流行的深度学习框架,提供了丰富的工具和
    的头像 发表于 11-05 17:43 ?1457次阅读

    PyTorch 数据加载与处理方法

    PyTorch 是一个流行的开源机器学习库,它提供了强大的工具来构建和训练深度学习模型。在构建模型之前,一个重要的步骤是加载和处理数据。 1. Py
    的头像 发表于 11-05 17:37 ?990次阅读

    如何在 PyTorch 中训练模型

    PyTorch 是一个流行的开源机器学习库,广泛用于计算机视觉和自然语言处理等领域。它提供了强大的计算图功能和动态图特性,使得模型的构建和调试变得更加灵活和直观。 数据准备 在训练模型之前,首先需要
    的头像 发表于 11-05 17:36 ?964次阅读

    如何使用 PyTorch 进行强化学习

    强化学习(Reinforcement Learning, RL)是一种机器学习方法,它通过与环境的交互来学习如何做出决策,以最大化累积奖励。PyTorch 是一个流行的开源机器
    的头像 发表于 11-05 17:34 ?1089次阅读

    使用PyTorch在英特尔独立显卡上训练模型

    PyTorch 2.5重磅更新:性能优化+新特性》中的一个新特性就是:正式支持在英特尔独立显卡上训练模型!
    的头像 发表于 11-01 14:21 ?2133次阅读
    使用<b class='flag-5'>PyTorch</b>在英特尔独立显卡上训练模型

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 ?706次阅读
    <b class='flag-5'>Pytorch</b><b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    新手小白怎么通过云服务器跑pytorch

    安装PyTorch的步骤可以根据不同的操作系统和需求有所差异,通过云服务器运行PyTorch的过程主要包括选择GPU云服务器平台、配置服务器环境、部署和运行PyTorch模型、优化性能等步骤。
    的头像 发表于 09-25 11:35 ?587次阅读

    基于Pytorch训练并部署ONNX模型在TDA4应用笔记

    电子发烧友网站提供《基于Pytorch训练并部署ONNX模型在TDA4应用笔记.pdf》资料免费下载
    发表于 09-11 09:24 ?0次下载
    基于<b class='flag-5'>Pytorch</b>训练并部署ONNX模型在TDA4应用笔记