0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器人定位及建图的准确性和鲁棒性

hl5C_deeptechch ? 来源:DeepTech深科技 ? 作者:DeepTech深科技 ? 2021-01-06 11:24 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

将一个机器人随机放入未知环境中,是否有办法让机器人一边移动一边确定自己的位置并构建该环境的地图?近日,由重庆大学王科副教授带领的团队的论文 SBAS:Salient Bundle Adjustment for Visual SLAM,将显著性预测模型应用于 SLAM 框架中去,模拟人类执行这一任务的过程,有效提升了机器人定位及建图的准确性和鲁棒性。

69a3b94c-4fce-11eb-8b86-12bb97331649.png

1. 什么是 SLAM?

SLAM 的全称是 Simultaneous Localization And Mapping,即同时定位与建图。

通俗来说,该技术希望搭载特定传感器的机器人在未知的环境中,通过不断的运动提取环境中的特征如墙角、柱子等来估计自身的位置,并同时根据传感器观测到的数据建立环境的地图,从而达到同时定位和地图构建的目的。

通常情况下,基于几何的方法的 SLAM 技术可以分为两类:特征法和直接法。

特征法通过提取和匹配图像中的关键点通过最小化重投影误差来估计相机的姿态,而直接法则直接利用图像中的像素强度通过最小化光度误差来估计相机的姿态。目前,该领域已经有了一些较为出色的算法模型。

MonoSLAM 是第一个使用扩展卡尔曼滤波(EKF)和 Shi-Tomasi 角点的实时视觉 SLAM 系统。该方法简化了 SLAM 对硬件的要求,并可以被应用于仿人机器人实时 3D 定位和建图以及手持相机的在线增强现实。

69d0f72c-4fce-11eb-8b86-12bb97331649.png

PTAM 是最早提出将 Track 和 Map 分开作为两个线程的一种 SLAM 算法,也是一种基于关键帧的单目视觉 SLAM 算法。采用非线性优化方法代替基于滤波器的方法作为后端优化方法,PTAM 提出并实现了跟踪映射过程的并行化。

6a187e26-4fce-11eb-8b86-12bb97331649.png

直接法不提取特征点,而是利用像素强度通过最小化光度误差来估计摄像机的姿态。基于直接法的 SLAM 模型如下:

DTAM 是第一个使用直接方法生成密集三维地图的系统。然而,它需要商用 GPU 来执行复杂的计算。为了提高效率,SVO 提取 FAST 特征,然后利用直接法的方式来估计摄像机的姿态和三维结构。

6a67dda4-4fce-11eb-8b86-12bb97331649.png

LSD-SLAM 扩展了这项工作,并且可以在大比例尺环境下生成半密集地图。同时能够将三维环境地图实时重构为关键帧的姿态图和对应的半稠密的深度图。

6aba2a50-4fce-11eb-8b86-12bb97331649.png

除了基于几何的方法的 SLAM 外,基于深度学习的 SLAM 凭借神经网络强大的学习能力也取得了很大的进步。PoseNet 是最早使用 CNN 端到端估计相机姿态的方法之一。Deep VO 使用 RNN 来建模运动动力学和图像序列之间的关系,ESP-VO 在此基础上增加了位姿估计的不确定性估计。

2. 基于显著性模型的 SLAM 框架

6b223d7a-4fce-11eb-8b86-12bb97331649.png

图 | 框架总览

为更好地解决现有 SLAM 框架的问题,作者提出了一个适用于室内和室外环境的 SLAM 框架,它可以应用于各种场景,具有较好的鲁棒性和准确性。

上图为整体框架的简化说明,它包括两个组件:基于几何法的 SLAM 管道和基于深度学习的显著性预测模块。显著性预测模块生成与 SLAM 数据集相对应的显著性图。然后,将显著性图作为输入,帮助 SLAM 选择显著的特征点,以提高定位的准确性和鲁棒性。

视觉显著性是指模仿人类视觉系统,从自然场景中选择出最显著、最感兴趣的区域或点,以便在不同的任务下进行进一步的处理。近年来,有许多基于深度学习的方法来预测自然场景中的显著性区域,并取得了很好的效果。然而,这些显著性预测方法并不能完全描述 SLAM 系统应该关注的特征,原因是这些方法只使用原始的人类注视信息,例如,在驾驶车辆行驶的过程中,人类的注视通常停留在车辆前方的道路上,因为这是车辆行驶的地方。但是,这还不够,因为 SLAM/VO 还需要聚焦在远离图像中心的区域,所以仅仅依靠人眼眼动跟踪器获得的凝视数据,并不能帮助 SLAM 系统捕捉所有这些重要线索。

为解决这一问题,作者通过结合几何信息和语义信息,在 KITTI 数据集的基础上,构造一个显著性数据集 Salient-KITTI 来训练显著性模型,用语义注视代替人类注视。具体来说,作者首先提取图像几何信息如特征点、线和平面等。然后使用语义分割网络 SDC Net 在感兴趣对象周围生成分割掩码。

然后,作者选取了 13 个类别作为 SLAM 应该重点关注的对象(红绿灯、交通标志、道路、建筑物、人行道、停车场、轨道、围栏、桥梁、电线杆、杆群、植被、地形)来过滤几何信息,因为这些类别中的区域通常包含显著的、稳定和鲁棒的特征。如下图,其显示了语义注视和人类注视地面真值的比较。

6b837662-4fce-11eb-8b86-12bb97331649.png

最后,基于该显著性数据集,作者使用 DI-Net 获得显著性模型,并用它来预测初始显著性图,随后根据图像的深度信息得到最终的显著性图。

为了验证显著性模型的可行性,作者做了三个实验:

a) 1、显著性模型的有效性验证。使用分别在 Saleint-KITTI 数据集和 SALICON 数据集上训练的显著性模型,验证所提出的显著性模型相对于其它显著性模型的有效性。

6bb33cd0-4fce-11eb-8b86-12bb97331649.png

图 | SALICON 和 KITTI 数据集训练的显著性模型的比较

结果显示,对于基于 SALICON 数据集训练的模型,当图像中没有显著对象时,注意力集中在图像的中心,从而忽略了其他重要信息,即我们所说的存在中心偏差。相反,在 Salient-KITTI 数据集上训练的模型可成功地捕捉到这些重要信息。此外,该模型还可以减少动态对象的影响,因此具有显著性值高的点通常是更稳定和鲁棒的点。

2、基于 KITTI 数据集的室外场景验证。在单目和立体视觉配置中,作者提出的系统比 ORB-SLAM3 更精确,因为 SBA 使显著特征点充分发挥其作用。同时,本实验也证明利用显著图可以使算法在姿态估计方面有更多的优势,具体效果如下图所示。

6c98bd28-4fce-11eb-8b86-12bb97331649.png

3、基于 EuRoc 数据集的室内场景验证。在第三个实验中,作者将算法与其他最先进的算法进行了比较,如 ORB-SLAM、DSM、DSO、突出 DSO 和 ORB-SLAM3。

6ce2a546-4fce-11eb-8b86-12bb97331649.png

图 | EuRoc 数据集的一些轨迹结果和地面真实情况

6d5143f2-4fce-11eb-8b86-12bb97331649.png

结果显示,在大多数序列中,作者提出的模型在室内和室外环境下都能很好地工作,同时也比文献中的最新技术获得更精确的结果。

王科表示,该研究不仅仅针对自动驾驶,基于图像处理的都可以用,它是一个基础的算法,而非纯应用的提升,只不过最初是在自动驾驶平台做起来的。

而随着 SLAM 技术的不断发展,它们将被应用到越来越多的领域中,小到扫地机器人,大到无人驾驶技术、AR、VR 等,未来将为人类生活带来极大的便利。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4716

    浏览量

    95765
  • SLAM
    +关注

    关注

    24

    文章

    444

    浏览量

    32554
  • 机器人视觉
    +关注

    关注

    0

    文章

    51

    浏览量

    10323

原文标题:重庆大学研发定位与建图技术,可让机器人视觉更智能

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    相机标定是视觉系统的基石,直接影响后续图像处理的精度。书中详细介绍了单目和双目相机的标定流程,包括标定板的使用、参数优化以及标定文件的应用。 实际应用中,标定误差可能导致机器人定位偏差,因此标定过程
    发表于 05-03 19:41

    VirtualLab Fusion应用:光栅的分析与优化

    一个场景,在这个场景中,我们分析了二元光栅的偏振依赖,并对结构进行了优化,使其在任意偏振角入射光下均能表现良好。 倾斜光栅的优化 这个用例演示了一个具有稍微变化的填充因子的倾
    发表于 02-19 08:54

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    ,一次生成深度信息。 自主机器人定位任务的本质是对机器人自身状态的估计问题,包括位置,朝向,速度等问题。 路径规划旨在找到从起点到目标区域的路径,确保路径的可行和最优。路径规划方法
    发表于 01-04 19:22

    《具身智能机器人系统》第10-13章阅读心得之具身智能机器人计算挑战

    阅读《具身智能机器人系统》第10-13章,我对具身智能机器人的工程实践有了全新认识。第10章从实时角度剖析了机器人计算加速问题。机器人定位
    发表于 01-04 01:15

    自动驾驶中常提的是个啥?

    随着自动驾驶技术的快速发展,(Robustness)成为评价自动驾驶系统的重要指标之一。很多小伙伴也会在自动驾驶相关的介绍中,对某些功能用
    的头像 发表于 01-02 16:32 ?7437次阅读
    自动驾驶中常提的<b class='flag-5'>鲁</b><b class='flag-5'>棒</b><b class='flag-5'>性</b>是个啥?

    如何提高OTDR测试的准确性

    OTDR(光时域反射仪)是光缆线路故障定位和光纤特性测量的重要工具,提高OTDR测试的准确性对于确保光缆线路的稳定运行至关重要。以下是一些提高OTDR测试准确性的方法: 一、准确设置O
    的头像 发表于 12-31 09:25 ?1166次阅读

    如何提高电位测量准确性

    在电子工程和物理实验中,电位测量是一项基本而重要的任务。电位测量的准确性直接影响到实验结果的可靠和产品的安全。 1. 选择合适的测量设备 选择合适的测量设备是提高电位测量准确性的第
    的头像 发表于 12-28 13:56 ?810次阅读

    如何提升ASR模型的准确性

    提升ASR(Automatic Speech Recognition,自动语音识别)模型的准确性是语音识别技术领域的核心挑战之一。以下是一些提升ASR模型准确性的关键方法: 一、优化数据收集与处理
    的头像 发表于 11-18 15:14 ?2456次阅读

    原理在控制系统中的应用

    在现代控制系统的设计和分析中,是一个核心概念。指的是系统在面对模型不确定性、外部干扰
    的头像 发表于 11-11 10:26 ?4202次阅读

    深度学习模型的优化

    深度学习模型的优化是一个复杂但至关重要的任务,它涉及多个方面的技术和策略。以下是一些关键的优化方法: 一、数据预处理与增强 数据清洗 :去除数据中的噪声和异常值,这是提高模型
    的头像 发表于 11-11 10:25 ?1310次阅读

    算法在数据处理中的应用

    。 二、算法的主要类型 统计方法:这类方法主要关注如何从含有异常值的数据中提取出有用
    的头像 发表于 11-11 10:22 ?1929次阅读

    分析方法及其应用

    (Robustness)是指系统或方法对于外部干扰、误差或变化的稳定性和适应能力。以下是对
    的头像 发表于 11-11 10:21 ?9117次阅读

    机器学习中的重要

    机器学习领域,模型的是指模型在面对输入数据的扰动、异常值、噪声或对抗性攻击时,仍能保持性能的能力。随着人工智能技术的快速发展,机器
    的头像 发表于 11-11 10:19 ?1355次阅读

    如何提高系统的

    在当今的技术环境中,系统面临着各种挑战,包括硬件故障、软件缺陷、网络攻击和人为错误。是指系统在面对这些挑战时保持正常运行的能力。 一、定义
    的头像 发表于 11-11 10:17 ?2638次阅读

    如何评估 ChatGPT 输出内容的准确性

    评估 ChatGPT 输出内容的准确性是一个复杂的过程,因为它涉及到多个因素,包括但不限于数据的质量和多样、模型的训练、上下文的理解、以及输出内容的逻辑一致。以下是一些评估 ChatGPT 输出
    的头像 发表于 10-25 17:48 ?1209次阅读