0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用机器学习更快地得出有用结论的新机会

倩倩 ? 来源:文财网 ? 作者:文财网 ? 2020-12-17 09:25 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能正在改变我们在COVID-19大流行期间对医疗保健的思考方式,使我们看到了利用机器学习更快地得出有用结论的新机会。

在COVID-19之前,医疗保健组织面临的最大挑战之一是如何在临床和运营上加速和扩展AI的应用。现在,大流行期间出现的用例揭示了AI可以优化价值的潜力。

医疗保健领导者正以三种重要方式使用AI来解决他们在大流行中面临的一些最大挑战。

消除护理差距。住院接受COVID-19的患者通常会患有潜在的健康状况,例如慢性病,肥胖或癌症。但是,在危机时期很难获得有关患者病史或健康状况社会决定因素的数据。一项分析发现,到2020年第一季度,住院的COVID-19患者中只有5.8%的可用数据与其基本健康状况和其他风险因素有关。

人工智能可以高度精确地匹配不同的病历。这使医疗保健数据科学家能够更好地了解使患者处于COVID-19严重并发症风险下的状况。例如,虽然医师们很早就了解到糖尿病,高血压和肥胖症会增加患者患重病的机会,但AI推动的分析已扩大了加剧风险的病症范围。可获得的数据洞察力越多,护理团队就知道如何最有效地代表患者进行干预的几率就越大。

预测COVID-19将在何处传播以及何时传播。去年春天,当在美国大规模出现时,医疗保健专业人员争先恐后地寻找有意义的数据来回答以下问题:“感染是何时开始的?它们起源于何处?” 卫生计划试图了解COVID-19如何影响其成员人群,存在潜在热点的地方以及如何最有效地管理和分类对弱势人群的护理以降低风险。

如今,人工智能对索赔数据的分析可以追溯到2019年11月,对流感样疾病患者的索赔进行了仔细的审查,使数据科学家能够确定最可能在10天之内成为COVID-19热点的区域提前。有了这种洞察力,医院和公共卫生机构就可以更好地预测护理需求,并带来必要的资源来满足其社区的需求。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 医疗保健
    +关注

    关注

    4

    文章

    322

    浏览量

    31417
  • 机器学习
    +关注

    关注

    66

    文章

    8510

    浏览量

    134899
  • COVID-19
    +关注

    关注

    0

    文章

    226

    浏览量

    10873
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【Simcenter流体和热解决方案】利用CFD和计算化学软件,更快地创新出更出色的产品

    Simcenter流体和热解决方案——利用CFD和计算化学软件,更快地创新出更出色的产品。Simcenter流体和热解决方案域软件适用于计算机辅助设计(CAD)设计师、计算流体力学(CFD)分析师
    的头像 发表于 03-07 16:52 ?407次阅读
    【Simcenter流体和热解决方案】<b class='flag-5'>利用</b>CFD和计算化学软件,<b class='flag-5'>更快地</b>创新出更出色的产品

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 ?396次阅读

    SME 如何利用工业虚拟实境快速探索和部署机器人解决方案

    两者结合,可以构建一个工业虚拟实境,从而更快地提高生产率,即使是中小型企业 (SME) 也能实现这一目标。 SME 的设计人员可以从简单直观的界面中获益,该界面结合了数字双胞胎、Delta 机器人、线性机器人或多轴
    的头像 发表于 01-25 17:22 ?603次阅读
    SME 如何<b class='flag-5'>利用</b>工业虚拟实境快速探索和部署<b class='flag-5'>机器</b>人解决方案

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习(一般指神经网络算法)是一个强大的工具,目前也非常流行,但它的应用领域仍然有限。与深度学习相比,传统方法在给定问题上的开发和测试速度
    的头像 发表于 12-30 09:16 ?1256次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 ?487次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的
    的头像 发表于 11-16 01:07 ?1010次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 ?1329次阅读

    具身智能与机器学习的关系

    具身智能(Embodied Intelligence)和机器学习(Machine Learning)是人工智能领域的两个重要概念,它们之间存在着密切的关系。 1. 具身智能的定义 具身智能是指智能体
    的头像 发表于 10-27 10:33 ?1113次阅读

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 ?3048次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    泰克20G系列示波器+USB 3.0测试夹具让测试更快更准确

    泰克MSO/DPO/DSA70000是同类产品中较先进的示波器之一,使当今的工程师能够以超小的噪声更好地查看信号、更快地调试信号异常以及利用测量和分析工具进行一致性测试和其他验证。
    的头像 发表于 09-23 10:10 ?1024次阅读
    泰克20G系列示波器+USB 3.0测试夹具让测试<b class='flag-5'>更快</b>更准确

    AI引擎机器学习阵列指南

    云端动态工作负载以及超高带宽网络,同时还可提供高级安全性功能。AI 和数据科学家以及软硬件开发者均可充分利用高计算密度的优势来加速提升任何应用的性能。AI 引擎机器学习拥有先进的张量计算能力,非常适合用于高度优化的 AI 和 M
    的头像 发表于 09-18 09:16 ?880次阅读
    AI引擎<b class='flag-5'>机器</b><b class='flag-5'>学习</b>阵列指南

    【「时间序列与机器学习」阅读体验】时间序列的信息提取

    个重要环节,目标是从给定的时间序列数据中提取出有用的信息和特征,以支持后续的分析和预测任务。 特征工程(Feature Engineering)是将数据转换为更好地表示潜在问题的特征,从而提高机器学习
    发表于 08-17 21:12

    【《时间序列与机器学习》阅读体验】+ 时间序列的信息提取

    本人有些机器学习的基础,理解起来一点也不轻松,加油。 作者首先说明了时间序列的信息提取是时间序列分析的一个重要环节,目标是从给定的时间序列数据中提取出有用的信息和特征,以支持后续的分析和预测任务,可以
    发表于 08-14 18:00

    【「时间序列与机器学习」阅读体验】+ 简单建议

    这本书以其系统性的框架和深入浅出的讲解,为读者绘制了一幅时间序列分析与机器学习融合应用的宏伟蓝图。作者不仅扎实地构建了时间序列分析的基础知识,更巧妙地展示了机器学习如何在这一领域发挥巨
    发表于 08-12 11:21

    【《时间序列与机器学习》阅读体验】+ 了解时间序列

    收到《时间序列与机器学习》一书,彩色印刷,公式代码清晰,非常精美。感谢作者,感谢电子发烧友提供了一个让我学习时间序列及应用的机会! 前言第一段描述了编写背景: 由此可知,这是一本关于时
    发表于 08-11 17:55