0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器人视觉的9大挑战

454398 ? 来源:ST社区 ? 作者:ST社区 ? 2022-12-09 10:25 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

来源:ST社区

机器人视觉解决方案是我们实现机器人视野的几大挑战。即便变得越来越简单易用,还是有一些棘手的问题。很多因素影响机器人在环境中的视觉,任务设置和工作场所。这里有9个总结出来的机器人视觉挑战:

照明

如果有过在低光照下拍摄数码照片的经验,就会知道照明至关重要。糟糕的照明会毁掉一切。成像传感器不像人眼那样适应性强或敏感。如果照明类型错误,视觉传感器将无法可靠地检测到物体。

有各种克服照明挑战的方法。一种方法是将有源照明结合到视觉传感器本身中。其他解决方案包括使用红外照明,环境中的固定照明或使用其他形式的光的技术,例如激光。

变形或铰接

球是用计算机视觉设置来检测的简单对象。你可能只是检测它的圆形轮廓,也许使用模板匹配算法。但是,如果球被压扁,它会改变形状,同样的方法将不再起作用。这是变形。它会导致一些机器人视觉技术相当大的问题。

铰接类似,是指由可移动关节引起的变形。例如,当您在肘部弯曲手臂时,手臂的形状会发生变化。各个链接(骨骼)保持相同的形状,但轮廓变形。由于许多视觉算法使用形状轮廓,因此清晰度使得物体识别更加困难。

职位和方向

机器人视觉系统最常见的功能是检测已知物体的位置和方向。因此,大多数集成视觉解决方案通常都克服了这两者面临的挑战。

只要整个物体可以在摄像机图像内被查看,检测物体的位置通常是直截了当的。许多系统对于对象方向的变化也是强健的。但是,并不是所有的方向都是平等的。虽然检测沿一个轴旋转的物体是足够简单的,但是检测物体何时3D旋转则更为复杂。

背景

图像的背景对物体检测的容易程度有很大的影响。想象一个极端的例子,对象被放置在一张纸上,在该纸上打印同一对象的图像。在这种情况下,机器人视觉设置可能不可能确定哪个是真实的物体。

完美的背景是空白的,并提供与检测到的物体良好的对比。它的确切属性将取决于正在使用的视觉检测算法。如果使用边缘检测器,那么背景不应该包含清晰的线条。背景的颜色和亮度也应该与物体的颜色和亮度不同。

闭塞

遮挡意味着物体的一部分被遮住了。在前面的四个挑战中,整个对象出现在相机图像中。遮挡是不同的,因为部分对象丢失。视觉系统显然不能检测到图像中不存在的东西。

有各种各样的东西可能会导致遮挡,包括:其他物体,机器人的部分或相机的不良位置。克服遮挡的方法通常涉及将对象的可见部分与其已知模型进行匹配,并假定对象的隐藏部分存在。

比例

在某些情况下,人眼很容易被尺度上的差异所欺骗。机器人视觉系统也可能被他们弄糊涂了。想象一下,你有两个完全相同的物体,只是一个比另一个大。想象一下,您正在使用固定的2D视觉设置,物体的大小决定了它与机器人的距离。如果您训练系统识别较小的物体,则会错误地检测到两个物体是相同的,并且较大的物体更接近相机。

尺度的另一个问题,也许不那么明显,就是像素值的问题。如果将机器人相机放置得很远,则图像中的对象将由较少的像素表示。当有更多的像素代表对象时,图像处理算法会更好地工作,但有一些例外。

照相机放置

不正确的相机位置可能会导致以前出现过的任何问题,所以重要的是要正确使用它。尝试将照相机放置在光线充足的区域,以便在没有变形的情况下尽可能清楚地看到物体,尽可能靠近物体而不会造成遮挡。照相机和观看表面之间不应有干扰的背景或其他物体。

运动

移动有时会导致计算机视觉设置出现问题,特别是在图像中出现模糊时。例如,这可能发生在快速移动的传送带上的物体上。数字成像传感器在短时间内捕获图像,但不会瞬间捕获整个图像。如果一个物体在捕捉过程中移动太快,将导致图像模糊。我们的眼睛可能不会注意到视频中的模糊,但算法会。当有清晰的静态图像时,机器人视觉效果最佳。

期望

与视觉算法的技术方面相比,最后的挑战更多地涉及到您的视觉设置方法。机器人视野面临的最大挑战之一就是工作人员对于视觉系统能提供什么不切实际的期望。通过确保期望符合技术的能力,您将从技术中获得最大收益。您可以通过确保员工接受关于视觉系统的教育来实现这一点。

审核编辑黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人视觉
    +关注

    关注

    0

    文章

    51

    浏览量

    10318
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    工业机器人的特点

    的基础,也是三者的实现终端,智能制造装备产业包括高档数控机床、工业机器人、自动化成套生产线、精密仪器仪表、智能传感器、汽车自动化焊接线、柔性自动化生产线、智能农机、3D 打印机等领域。而智能制造装备中工业
    发表于 07-26 11:22

    协作机器人厂商为何要自研视觉方案

    年来,不少协作机器人厂商推出了“手眼一体”的协作机器人本体产品,或在研发视觉相机及视觉软件系统。
    的头像 发表于 06-19 14:58 ?515次阅读

    盘点#机器人开发平台

    地瓜机器人RDK X5开发套件地瓜机器人RDK X5开发套件产品介绍 旭日5芯片10TOPs算力-电子发烧友网机器人开发套件 Kria KR260机器人开发套件 Kria KR260-
    发表于 05-13 15:02

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    阅读心得体会:ROS2机器人视觉与地图构建技术 通过对本书第7章(ROS2视觉应用)和第8章(ROS2地图构建)的学习,我对机器人视觉感知和
    发表于 05-03 19:41

    大象机器人携手进迭时空推出 RISC-V 全栈开源六轴机械臂产品

    识别联调。 进迭时空致力于为智能机器人提供完整全栈优化的RISC-V AI软硬件解决方案,第一代RISC-V AI CPU芯片K1已完成AI视觉感知、AI语音处理、自动避障、路径规划、运动控制等
    发表于 04-25 17:59

    海康机器人布局关节机器人业务

    关节机器人领域迎来一位实力选手。继布局移动机器人机器视觉业务后,海康机器人正在拓展新的产品线。
    的头像 发表于 03-20 10:47 ?786次阅读

    【「具身智能机器人系统」阅读体验】2.具身智能机器人的基础模块

    具身智能机器人的基础模块,这个是本书的第二部分内容,主要分为四个部分:机器人计算系统,自主机器人的感知系统,自主机器人的定位系统,自主机器人
    发表于 01-04 19:22

    《具身智能机器人系统》第10-13章阅读心得之具身智能机器人计算挑战

    阅读《具身智能机器人系统》第10-13章,我对具身智能机器人的工程实践有了全新认识。第10章从实时性角度剖析了机器人计算加速问题。机器人定位中的SLAM算法需要处理两个计算密集型任务:
    发表于 01-04 01:15

    【「具身智能机器人系统」阅读体验】+两本互为支持的书

    最近在阅读《具身智能机器人系统》这本书的同时,还读了 《计算机视觉之PyTorch数字图像处理》一书,这两本书完全可以视为是互为依托的姊妹篇。《计算机视觉之PyTorch数字图像处理》是介绍
    发表于 01-01 15:50

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    。 多模态融合的创新与突破 机器人控制技术的另一个重要突破在于多模态大模型的应用。相比于仅通过文字进行人机交互的传统方法,现代机器人能够融合视觉、声音、定位等多模态输入信息,为任务执行提供更加全面的感知
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    影响与发展,提供了全球及国内行业趋势的见解。书中详细讨论了这一新兴领域面临的诸多挑战,从应用的不确定性、昂贵的成本到伦理问题,为读者呈现了当前形势的现实视角。 接下来,书中深入探讨了具身智能机器人的历史
    发表于 12-28 21:12

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景中,协作机器人面临的主要挑战是快速适应新工艺流程。具身智
    发表于 12-24 15:03

    【「具身智能机器人系统」阅读体验】+初品的体验

    解决许多技术的和非技术的挑战,如提高智能体的自主性、处理复杂环境互动的能力及确保行为的伦理和安全性。 未来的研究需要将视觉、语音和其他传感技术与机器人技术相结合,以探索更加先进的知识表示和记忆模块,利用强化学习进一步优化决策过程
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    挑战,BEV技术提供了新的解决思路。 第5章机器人定位系统的设计思路给了我新的灵感。本章详述了多传感器融合定位方法,将GNSS、IMU等直接测量与视觉里程计等环境感知相结合,用卡尔曼滤波器优化定位精度
    发表于 12-19 22:26

    解锁机器人视觉与人工智能的潜力,从“盲人机器”改造成有视觉能力的机器人(上)

    正如人类依赖眼睛和大脑来解读世界,机器人也需要自己的视觉系统来有效运作。没有视觉机器人就如同蒙上双眼的人类,仅能执行预编程的命令,容易碰撞障碍物,并犯下代价高昂的错误。这正是
    的头像 发表于 10-12 09:56 ?830次阅读
    解锁<b class='flag-5'>机器人</b><b class='flag-5'>视觉</b>与人工智能的潜力,从“盲人<b class='flag-5'>机器</b>”改造成有<b class='flag-5'>视觉</b>能力的<b class='flag-5'>机器人</b>(上)