0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

独特的方式操纵SRAM单元以处理深度学习任务

ss ? 来源:宇芯电子 ? 作者:宇芯电子 ? 2020-09-19 09:15 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一种新颖的深度学习加速器。专用单元定义了一个SRAM,该单元可以处理矩阵乘法,量化,存储以及推理处理器所需的其他工作。

在Spice仿真中,当使用8位整数数学识别手写数字时,该设计可提供100兆次操作/秒/瓦(TOPS / W)。它的计算密度可以击败Google的TPU一个数量级。

该设计是使用内存中计算方法的加速器产品线中最新的一种。设计使用40纳米NOR闪存单元的深度学习处理器,其目标是为监视摄像机等设备使用低功耗芯片。

设计时使用了很少的模拟电路,因此可以扩展到精细的工艺节点。它可能成为低功耗处理器中引擎(从边缘到云)的引擎。

独特的方式操纵SRAM单元以处理深度学习任务

这个设计使用户可以为从权重到神经网络层甚至单个神经元的所有内容创建自定义参数。这种灵活性可以使将来设计用于训练处理器的设计成为可能。但是尚无用于对该设计进行编程的软件堆栈,可能会在以后解决或留给将来的客户使用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    88

    文章

    35876

    浏览量

    282867
  • SPICE
    +关注

    关注

    6

    文章

    193

    浏览量

    43748
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的定义与发展
    的头像 发表于 02-12 15:15 ?1005次阅读

    深度学习工作负载中GPU与LPU的主要差异

    ,一个新的竞争力量——LPU(Language Processing Unit,语言处理单元)已悄然登场,LPU专注于解决自然语言处理(NLP)任务中的顺序性问题,是构建AI应用不可或
    的头像 发表于 12-09 11:01 ?3550次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>工作负载中GPU与LPU的主要差异

    GPU在深度学习中的应用 GPUs在图形设计中的作用

    随着人工智能技术的飞速发展,深度学习作为其核心部分,已经成为推动技术进步的重要力量。GPU(图形处理单元)在深度
    的头像 发表于 11-19 10:55 ?1759次阅读

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度学习的一个分支,因其在图像
    的头像 发表于 11-15 14:52 ?947次阅读

    深度学习中RNN的优势与挑战

    循环神经网络(RNN)是深度学习领域中处理序列数据的基石。它们通过在每个时间步长上循环传递信息,使得网络能够捕捉时间序列数据中的长期依赖关系。然而,尽管RNN在某些任务上表现出色,它们
    的头像 发表于 11-15 09:55 ?1476次阅读

    NPU与传统处理器的区别是什么

    和GPU相比,NPU在处理深度学习任务时展现出了显著的优势。 1. 设计目的 传统处理器: CPU(中央
    的头像 发表于 11-15 09:29 ?1596次阅读

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为
    的头像 发表于 11-14 15:17 ?2217次阅读

    pcie在深度学习中的应用

    深度学习模型通常需要大量的数据和强大的计算能力来训练。传统的CPU计算资源有限,难以满足深度学习的需求。因此,GPU(图形处理
    的头像 发表于 11-13 10:39 ?1513次阅读

    使用LSTM神经网络处理自然语言处理任务

    自然语言处理(NLP)是人工智能领域的一个重要分支,它旨在使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,特别是循环神经网络(RNN)及其变体——长短期记忆(LSTM)网络的出现
    的头像 发表于 11-13 09:56 ?1320次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,用最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 ?752次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是
    的头像 发表于 10-27 11:13 ?1625次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPGA的AlexNet卷积运算加速 项目名称
    的头像 发表于 10-25 09:22 ?1369次阅读

    深度学习GPU加速效果如何

    图形处理器(GPU)凭借其强大的并行计算能力,成为加速深度学习任务的理想选择。
    的头像 发表于 10-17 10:07 ?697次阅读

    处理器的执行单元是什么

    处理器的执行单元(Execution Unit,简称EU)是微处理器中负责执行指令的核心部分,它集成了多种功能单元,共同协作完成算术运算、逻辑运算以及指令的译码和执行等
    的头像 发表于 10-05 15:19 ?1620次阅读

    FPGA做深度学习能走多远?

    。FPGA的优势就是可编程可配置,逻辑资源多,功耗低,而且赛灵思等都在极力推广。不知道用FPGA做深度学习未来会怎样发展,能走多远,你怎么看。 A:FPGA 在深度学习领域具有
    发表于 09-27 20:53